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Abstract

Whereas classic work in judgment and decision making hassémton the deviation of intuition
from rationality, more recent research has focused on thenpeance of intuition in real-world en-
vironments. Borrowing from both approaches, we investigatehich extent competing models of
intuitive probabilistic decision making overlap with ches according to the axioms of probability
theory and how accurate those models can be expected torpenfeeal-world environments. Specif-
ically, we assessed to which extent heuristics, modelsemphting weighted additive information
integration (WADD), and the parallel constraint satisiact(PCS) network model approximate the
Bayesian solution and how often they lead to correct degsiom probabilistic decision task. PCS
and WADD outperform simple heuristics on both criteria wah approximation of 88.8% and a
performance of 73.7%. Results are discussed in the lightle€ten of intuitive processes by rein-

forcement learning.
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1. Introduction

Classic work in judgment and decision making indicates thiaiiive processes can lead to system-
atic deviations from rationality often referred to as b&ader an overview, see Gilovich, Griffin, &
Kahneman, 2002). Biases were thereby used to diagnose tloé ecesgain judgment heuristics which
were assumed to be (partially) based on intuitive procgsdihe representativeness heuristic posits,
for example, that persons’ probability judgments are infesl by the degree to which a target is seen
as representative for a category. Observations of a comjuriallacy—as demonstrated in the classic
Linda-is-a-bank-teller vignette—were explained by theresentativeness heuristic (e.g., Kahneman
& Frederick, 2002).

This seminal work was crucial to highlight the role of intait which has often been neglected in
mainstream decision research. The approach, howeverhatseeveral limitations. First, the exact
processes that produce feelings of representativeness meerspecified, and therefore predictions
remained imprecise. Second, intuition research in judgrmed decision making was not sufficiently
connected to work in cognitive psychology that aims to dgewiocesses underlying intuition. Third,
since tasks were constructed such that the use of intuigiuestics leads to deviations from rational-
ity, intuition was per operationalization doomed to leadvtong decisions, which has hindered the
detection of intuition’s merits (Lopes, 1991).

Recent intuition research has aimed to overcome all threlions. Hogarth (2001), for example,
suggested a model that describes the cognitive procesdedying intuition and opened the view to-
wards situations in which intuition might be successful gedh, 2005). According to his model, the
quality of intuitive decisions crucially depends on therieag environment. Other researchers went
one step further and developed precise computational mdéaleintuitive processes in judgment and
decision making based on general models of memory (Dougl@ettys, & Ogden, 1999), percep-
tion (Betsch & Gléckner, 2010; Busemeyer & Townsend, 1993ct@iér & Betsch, 2008a; Holyoak
& Simon, 1999; Thagard & Millgram, 1995; Usher & McClelland)@®.), or the idea of automatic
serial production rules (Gigerenzer, Todd, & The ABC Rese&iup, 1999).

Reviewing this multitude of cognitive processes, Glockmal Witteman (2010) argue that the con-
cept of intuition is often used too broadly as an umbrellentéar many kinds of different processes.
There are most likely several qualitatively different ksraf cognitive processes that produce feelings

of how to decide without knowing why (Claxton, 1998) and thataensciously influence our choices
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(Bargh & Chartrand, 1999).

In the current paper, we report results from a simulation ithaestigates how (some of) the sug-
gested mechanisms underlying intuition perform in prolistd inferences. Specifically, we generate
all possible decision tasks for choices between two alteembased on six probabilistic binary cues.
The rational solution for this kind of task, i.e., the intagon of cues coherent with the axioms of
probability theory, can be calculated according to Bayesbtem! We were interested in three re-
lated questions: a) how often do the mechanisms lead to ehdi@at are in line with the rational
choice (imicry), b) how often would mechanisms lead to correct choigesfdrmance), and c)

which factors of the environment influence performance cheaechanismrioderators).

2. Previous Work

One reasonable assumption is that more complex and effdefision strategies generally lead to
better decisions (Beach & Mitchell, 1978). Some studies,dwar show that this assumption does
not hold in all environments. Payne et al. (1988), for examphow that under time constraints
simple lexicographic strategies (LEX; i.e., compare auiy most probable outcomes and decide
in favor of one option if one outcome differentiates betweptions) can lead to better decisions than
weighted linear models such as weighted additive (WADD,; weeight outcomes by probabilities
and add them up). Also, simple heuristics like LEX were shawperform well with respect to
accuracy in several real-world settings in which an outsidirion for assessment was available
(Czerlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer &gBton, 2009; but see also Hilbig &
Richter, 2011). More systematic investigations of the pemince of LEX and other decision rules
in probabilistic inferences show that strategy perforneadepends on the match between decision
rule and environment (Hogarth & Karelaia, 2007). Hencetaterstrategies may be tailored to be

successful in specific environments.

3. Aims of the Current Study

In the current study we extend this previous work. First, wierd the scope of modeling by includ-
ing a network model (PCS) in addition to the standard mechaniBTB, WADD, and EQW. TTB is a

prominent representative of LEX algorithms and EQW is a &nhguristic that sums up unweighted

1See, however, Cohen (1981) for a discussion on the rattgrafiBayesian inference.
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cue values. Automatic implementations of TTB and EQW aregsees underlying intuition accord-
ing to Gigerenzer (2007). Furthermore, various decisiode®in the literature predict choices that
follow weighted linear information integration (Busemegefownsend, 1993; Roe, Busemeyer, &
Townsend, 2001). To avoid complex model simulations fos¢hmodels, we used two implemen-
tations of WADD to approximate their performance. Furtherey we added variants of PCS (i.e.,
PCS, PCS) which has been shown to account well for decisions (GlocknBetsch, 2008b), con-
fidence, and response time (Glockner & Betsch, 2012; Gloc&krgrdder, 2011), coherence effects
(Glockner, Betsch, & Schindler, 2010; Holyoak & Simon, 199%nNd arousal (Hochman, Ayal, &
Glockner, 2010) in probabilistic inferences. Accordind?@S, the mental representation of a task is
modeled as a connectionist network including salient cmelsogtions as interconnected nodes and
their subjective validities and cue patterns as connedtieights (see Figure 1). Initial advantages
of one option are accentuated by a spreading activation amésin that highlights cues favoring this
option and devaluates cues speaking against it. PCS thussaoherence processes in which the
interpretation of a decision situation is simplified by ateysatic re-evaluation of information. The
two variants of the PCS model used in the simulations difféhék parameter of the transformation
function (see Figure 1, lower right). Parameter k can berpnéted as the individual sensitivity to
differences between validities. For k = 0{k co) the relative weight between differing validities is 1
(— o), that is, an individual shows no (infinite) sensitivity tamds differences in validities. In past
studies, individually fitted k parameters varied betweend.& For k=1 (i.e., PCS, transformation
is linear, whereas for k = 2 (i.e., P@Stransformation is quadratic and thus reflects acceoaii
cues due to higher sensitivity (Glockner & Broder, 2011, p. 27

Second, we do not use a few sampled environmental congiaabnly. To estimate the total
performance, we include all distinct tasks of choices betwvo options based on six probabilistic
cues by combining all possible cue patterns with all vafigiatterns. We classify these tasks along
different dimensions to learn about which environmentaldiions render which kind of intuition
most successful.

Third, we determine the extent to which models mimic ratiateice, and additionally we de-
termine the performance of the models as the relative numb@xpected) correct choices in the
environment. We therefore assess the degree to whichiwetaitechanisms “violate coherence with

the implications of statistical theory” (Hogarth & Karedai2007, p. 734), as formulated in the co-
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herence criterion of rationality, whereas earlier worleoftelied on the correspondence criterion of

rationality, that is, the extent to which models correspaiitth an outside criterion.

4. Simulation

We assessed mimicry of the rational model and performarradifferent processes that are assumed

to underlie intuition in probabilistic inferences.

4.1 Environments

We investigated probabilistic decision making betweendawtons with six binary cues. We included
all distinct tasks fully crossed with all possible sets oé aalidities. From the total set of tasks
resulting from all cue patterns (i.€ x 6 cues with binary outcomeg&’ x 26 = 4,096), we generated
a reduced set by excluding conceptually identical tasks.dvwpped patterns that a) were option-
reversed, b) differed in the sign of non-discriminating €woaly (i.e.,—— vs. ++), and c¢) did not
differentiate between options at all which resulted in alifjed set of 364 cue patterns. In a second
step, we generated a reduced set of cue validity combirstoyrihe six cues using interval sampling.
That is, we generated all combinations of cue validitiegnag from .51 to .99 in steps of .03 for six
cues and ordered each combination from the highest to theslovue validity. Note that the order of
validities is negligible as long as all qualified tasks of amieonment are sampled. We then deleted
all multiples with identical cue validities and combinatsothat contained the same cue validity at
least twice to assure that TTB makes unambiguous predgctibims resulted in 12,376 combinations

of validities in total.

4.2 Models for Intuitive Processes

The simulation involved two simple heuristics, TTB (take-tbest) and EQW (equal weight) from
the adaptive toolbox (Gigerenzer, Todd, & The ABC Researchugrb999); two implementations of
weighted additive models (WADD) representing a whole ctdsstuition models, and neural network
implementations of intuitive processes according to Rar@lonstraint Satisfaction (PCS; Glockner
& Betsch, 2008a) differing in the sensitivity parameter ke(above). For each model and the rational

solution, the choice rule is described in Table 1.
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4.3 Dependent Variables

For each task, we determined the rational choice accordimgive Bayes and compared it against
the choices that result from applying the respective initmodel. We determined the posterior
probability (i.e.,p?%<) of the more probable of two options in taskgiven the cues by assuming

equal priors for each option and independence of cues (c@mpth Lee & Cummins, 2004, Formula

1, p. 345):
p(A>B|cues) — [LicrnvixILiers(1—2i) if > 50
Bayes _ p(A>Bl|cues)+p(B>A|cues) ILicen vixI Licrg(1—vi)+1 Licra vi X I Licpa(1—22) = (1)
p(A>Blcues) )
L= p(A>B|cues)+p(B>Alcues) if < .50

The numerator is the product of validities over all cues fangpoption A (i.e., FA) times the product
of (1 - validities) over all cues favoring option B (i.e., FB)hich constitutes the probability of A being
greater than B for the observed cues. The denominator tatestithe sum of the nominator and the
probability of B being greater than A given the cues. Puedédhtly, the probability of the target event
given the cues is set in proportion to the sum of the prolaslof all possible events given the cues.

Our first dependent measungmicry of the rational solution is measured as the percentage of
choice overlap between the Bayesian and each intuition molge that the rational solution could
either suggest one or be inconclusive between options., Ehlbaseline of 33.3% of choice overlap
can be expected by chance. The second dependent measuferisipace, which is the percentage of
correct choices that can be expected when applying modet kifi). Hence, expected performance

of each model over all tasks= 1... N can be calculated by:

pDayes if model k overlaps withBayes
N
1
=Y ~§ X\ 1-pPwe if modelk does not overlap witBayes ()
n=1
.50 if modelk is inconclusive

\

If the model (does not) overlap(s) with the Bayesian solytibe probability for a correct decision
equals the (complementary) probability according to Baifabe model does not make a prediction,

a choice is based on guessing and thus correct with a praiatfil50 (assuming that options always
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differ on the criterion).
Hence, mimicry measures the approximation of the Bayesianiso, whereas performance mea-

sures the expected accuracy of resulting choices.

4.4 Design

We determined mimicry and performance based on a complessiag of the reduced sets of tasks
and validities (i.e.364 x 12,376 = 4,504,864 choices). To investigate potential moderators, the
influence of three variables capturing characteristicheftask on these measures was analyzed. We
categorized tasks as easy, intermediate or hard accorditigetposterior probability of the more
probable optiorpZeves, A taskn is categorized as hard P < .65, as easy ipZwe > .85, and

as intermediate for values in-betweehVe further categorized tasks according to the mean and the
standard deviation (SD) of the set of six cue validities. tlibaa task is categorized as a low mean
(SD) task if the mean (SD) of its validities belongs to thettwat 25% of all means (SDs), as high

if it belongs to the top 25% of all means (SDs), and as intefatedor values in-betweehIn total,

the simulation consisted of 6 (modelg)3 (task difficulty) x 3 (mean of validities)x 3 (standard

deviation of validities)= 162 conditions.

4.5 Hypotheses

We predict less mimicry of the rational choice model and loperformance with increasing task
difficulty (H1). If a task is easy, that is, if cues stronglypport one option, it is (more) likely that

all models are in line with the rational choice. We furtheedlict less mimicry with increasing mean
validities (H2). This hypothesis rests on the observatian for extreme probabilities (e.g., cue validi-
ties) linear approximations of rational solutions tend ézdme worse (Juslin, Nilsson, & Winman,
2009). Finally, based on previous work (Hogarth & Karel@@)7), we predict that the performance
and mimicry of models depend on the standard deviation ofvalidities. With increasing standard
deviation the environment becomes less compensatory.cdompensatory information integration al-
gorithms such as TTB should be better in mimicry of the ratlamoice model in non-compensatory
(as compared to compensatory) environments (and vice verdaQw) (H3). An algorithm that

successfully approximates the rational solution will besgn more frequently by adaptively learning

2Specific cutoff values are arbitrary. We provide a regressigalysis in the next section that supports our conclusion
from the plotted data.
3We checked that the pattern of results is not dependent cextdmt values chosen as categorization criteria.
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individuals over time. Due to the observed prevalence of RG#ababilistic inferences in past stud-
ies, we therefore predicted that PCS would provide the bgsbapnation in the model comparison

(H4).

5. Results

5.1 Mimicry of Rational Solution

In line with our hypothesis, PGShows the highest overlap (88.8%) with the rational choiogl@h
averaged over all tasks (Figure 2, left panel). The otheratss@xcept for EQW-also overlap consid-
erably well with the rational solution (WADE,, = 86.5%, TTB = 83.3%; EQW = 57.6%). Averaged
over all environments and strategies, the percentage ofagvimcreases from 63.3% to 94.7% with
decreasing task difficulty (Figure 2, middle left panel)parting our first hypothesis. Furthermore,
we observe that overlap decreases from 83.8% to 74.0% wleemdélan of cue validities increases
(middle right panel), which supports our second hypothe®ithout being hypothesized, we also
observe that overlap decreases from 82.1% to 76.2% whertghdasd deviation of cue validities
increases (right panel).

To explore interactions between models and task charatitsriall conditions are plotted in Figure
3. All models are affected similarly by task difficulty andetimean of cue validities. Choice overlap
is lower for difficult tasks and tasks with a high mean of cuédvizes. In accordance with H3,
model overlap depends on the standard deviation of cueitiedid The mimicry of rationality of
the compensatory models decreases with increasing sthddaiation (model average: from 82.4%
to 74.3%). Overlap, however, increases with increasingdstad deviation of cue validities for the

non-compensatory model from 80.5% to 86.0%.

5.2 Performance

As a second dependent variable we analyzed the performéeaetomodel, that is, the expected pro-
portion of correct choices in the environment (iy#.,, see Formula 2). Averaged over all conditions,
PCS shows the highest performance with 73.7% correct choidesely followed by WADDQ,,,; with
73.1%, TTB with 71.8%, PCSwith 70.1%, WADDncorr With 69.2%, and EQW with 64.9%. For
difficult tasks, all models are close to chance level of .5Q{Fe 4, left panel). For easy tasks (right

panel), PCS WADD., and TTB are close to 100%. For tasks with intermediate ditfijgmiddle
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panel), PCgand WADD,,,, lead on average to higher performance (71.1% and 70.3%)Tth&n
(68.4%).

Note that there exist few constellations in which TTB outpens all other strategies. This is the
case if the mean of the cue validities is low to intermediaie the standard deviation of validities is

high (i.e., when the environment is non-compensatory).

5.3 Predicting Mimicry of Rational Solution

To predict the overlap with the rational solution for dif@t environments, we conducted a logistic
regression predicting mimicry of the Bayesian choice by remrmental factors and type of model
(Table 2). In line with the results already reported, oyeitecreases for easier tasks, but decreases
with increasing average and standard deviation of cueitiabd The coefficients represent changes
in odds (i.e., p/(1-p)) that result from one unit change mphedictor. Odds above 1 indicate positive
predictors. The odds for an overlap with the rational chonmlel, for example, are twice as high
for PCS in comparison to TTB when controlled for task difficulty, nmezalidities, and the standard
deviation of validities in a logistic regression. Conveys¢he odds reduce by factor 0.003 (= 1/
333.3) when cue mean validities (hypothetically) changé pypint.

We also tested an extended regression model in which allwayinteraction terms of strategies
with standard deviation of validities were included. Indiwith our interaction hypothesis (H3),
with increasing standard deviation of validities the oduasain overlap with the rational choice model
decrease for all compensatory models in comparison to TTBoadh the effect of the additional

interactions is negligibleA Pseudak? = .01) and therefore results are not displayed here.

6. Discussion

In many everyday decisions persons will not have the timéarile cognitive capacity to calculate
rational solutions deliberately. Persons have to rely gm@pmations of rationality based on simpli-
fied deliberate rules and/or on automatic-intuitive preess In the current paper we have investigated
the degree to which different algorithms suggested to d@sartuitive processes approximate the ra-
tional solution.

In line with our expectation, we observed that overall a far&onstraint satisfaction model

showed highest mimicry of the rational solution (88.8%) &mds also best performance (73.7%)
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among all considered models. Assuming that individualsnléa select particularly successful al-
gorithms over time (from an ontogenetic and phylogenetcrieg perspective), this converges with
previous findings indicating that PCS processes seem toipireyaobabilistic inferences (see intro-

duction for references).

However, a chance corrected weighted additive algorithmchwyas used as placeholder for other
complex models of intuition (e.g., Busemeyer & Townsend,3)98red only slightly worse concern-
ing performance than PCS. Simple heuristics showed lowdoimeance on average, although there
were a few environmental constellations (high SDs of vaéd) in which TTB outperformed all other
models. Furthermore, it should be kept in mind that our tesah model performance are based on
the simplifying assumption that all distinct choice prabkehave an equal probability of appearing in
the real world, which might be debatable. Neverthelessatvaimicry and performance seem to be
generally robust since PCS also performs best for the majofritonsidered problem subsets.

We were also able to identify environmental moderators ofiicry and performance. As expected,
mimicry and performance is higher for easier tasks and &kgtavith low average cue validities. We
also showed that compensatory models have better mimicopfopensatory environments (i.e., low
standard deviation of cue validities), as compared to moreaompensatory environments (i.e., high
standard deviation of cue validities), and vice versa far-nompensatory mechanisms. Considering
the overall dominance of PCS and WARY, it might be questioned from a reinforcement learning
perspective whether the advantage in performance of TTBed environmental conditions would
be sufficient to make persons choose this algorithm.

Overall, we conclude that implementations of intuitive ggsses that rely on PCS or chance-
corrected weighted additive cue integration approximiagerational solution very well. Considering
that Bayesian calculations are effortful and connected Widfh opportunity costs, and taking into
account that even small errors in these deliberate caiontatan lead to severe mistakes (Hammond,
Hamm, Grassia, & Pearson, 1987), it will often be optimagrelbased on rational strategy selection
considerations (Beach & Mitchell, 1978)—to apply quick awédic-intuitive information integration

algorithms such as PCS instead of slow deliberate Bayesianlatbn.
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TABLES
Table 1: Models and choice rules.
Class of Models Name of Model Choice Rule
rational choice naive Bayes choose the option with the highebability

assuming—for matters of simplification—equal
priors for both options and independence of

cues
adaptive toolbox take-the-best (TTB) choose the option r@icg to the most valid
cue that discriminates between options
equal choose the option with the higher number of
weighting (EQW) positive cue values
weighted additive weighted additive  choose the option with the higher sum of cue
uncorrected values weighted by cue validities that are not
(WADD yneorn) corrected for chance-level
weighted additive choose the option with the higher sum of cue

corrected (WADR,y) Vvalues weighted by cue validities that are cor-
rected for chance-level (i.e., validity-.50)

neural network parallel constraints choose the option with the higher activation of
satisfaction model the option node

(PCS)
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Table 2: Logistic regression predicting mimicry of the rational @emodel by type of intuition

model, task difficulty, and mean and standard deviation hdies.

Independent Variables

Mimicry

Odds Ratios

Task Difficulty (posterior probability)
Mean Validities

SD Validities

Intuition Model (control = TTB)
EQW

WADD yncorr

WADD ¢ore

PCS

PCS

1976.041
0.003
4 %1075

0.143
0.544
1.484
0.660
2.000

Note. Intuition model is dummy-coded; Pseudd = .24.
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FIGURES

_ -0.2 _
option; |- --| option,

We o, = [+.01,-.01]

cue; cue, cues cuey cues cueg

option, option,

cue; + _ wy, = (v, —0.5)"
cue, + -
el - PCS;:k=1
4 -
General L =
cues - + Validity PCSz k=2
cueg - +

Figure 1. Exemplary task (lower left) represented in the PCS netwGtes and options are bidirec-
tionally interconnected nodes. Cue validitiesre transformed into weights,, according to a trans-
formation function (lower right) and attached to the corniwgrs between the General Validity node
and the cues (linewidth indicates size of weights). (Nampjp®rtive cues-{ or +) are transformed
into (inhibitory or excitatory) weightsu.,_,, (upper right) that are attached to the connections be-
tween the cues and the options (dotted or continuous likesivation weighted byw,, spreads from
the General Validity node into the network. Node activagiane updated iteratively until changes in
activation are negligible< 10~3). Maximum and minimum node activations are settband1,

decay is set ta)5; see Glockner and Betsch (2008a) for details.
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SD validities

task difficulty mean validities

overall mimicry

Note. For hard vs. easy tasks posterior probability is < .65 vs. > .85.

Figure 2: Mimicry of the rational choice model by (from left to rightipel) intuition model, task

difficulty, mean validities, and standard deviation of déles.
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