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Abstract

Whereas classic work in judgment and decision making has focused on the deviation of intuition

from rationality, more recent research has focused on the performance of intuition in real-world en-

vironments. Borrowing from both approaches, we investigateto which extent competing models of

intuitive probabilistic decision making overlap with choices according to the axioms of probability

theory and how accurate those models can be expected to perform in real-world environments. Specif-

ically, we assessed to which extent heuristics, models implementing weighted additive information

integration (WADD), and the parallel constraint satisfaction (PCS) network model approximate the

Bayesian solution and how often they lead to correct decisions in a probabilistic decision task. PCS

and WADD outperform simple heuristics on both criteria withan approximation of 88.8% and a

performance of 73.7%. Results are discussed in the light of selection of intuitive processes by rein-

forcement learning.
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1. Introduction

Classic work in judgment and decision making indicates that intuitive processes can lead to system-

atic deviations from rationality often referred to as biases (for an overview, see Gilovich, Griffin, &

Kahneman, 2002). Biases were thereby used to diagnose the useof certain judgment heuristics which

were assumed to be (partially) based on intuitive processing. The representativeness heuristic posits,

for example, that persons’ probability judgments are influenced by the degree to which a target is seen

as representative for a category. Observations of a conjunction fallacy—as demonstrated in the classic

Linda-is-a-bank-teller vignette—were explained by the representativeness heuristic (e.g., Kahneman

& Frederick, 2002).

This seminal work was crucial to highlight the role of intuition which has often been neglected in

mainstream decision research. The approach, however, alsohad several limitations. First, the exact

processes that produce feelings of representativeness were not specified, and therefore predictions

remained imprecise. Second, intuition research in judgment and decision making was not sufficiently

connected to work in cognitive psychology that aims to specify processes underlying intuition. Third,

since tasks were constructed such that the use of intuitive heuristics leads to deviations from rational-

ity, intuition was per operationalization doomed to lead towrong decisions, which has hindered the

detection of intuition’s merits (Lopes, 1991).

Recent intuition research has aimed to overcome all three limitations. Hogarth (2001), for example,

suggested a model that describes the cognitive processes underlying intuition and opened the view to-

wards situations in which intuition might be successful (Hogarth, 2005). According to his model, the

quality of intuitive decisions crucially depends on the learning environment. Other researchers went

one step further and developed precise computational models for intuitive processes in judgment and

decision making based on general models of memory (Dougherty, Gettys, & Ogden, 1999), percep-

tion (Betsch & Glöckner, 2010; Busemeyer & Townsend, 1993; Glöckner & Betsch, 2008a; Holyoak

& Simon, 1999; Thagard & Millgram, 1995; Usher & McClelland, 2001), or the idea of automatic

serial production rules (Gigerenzer, Todd, & The ABC ResearchGroup, 1999).

Reviewing this multitude of cognitive processes, Glöckner and Witteman (2010) argue that the con-

cept of intuition is often used too broadly as an umbrella term for many kinds of different processes.

There are most likely several qualitatively different kinds of cognitive processes that produce feelings

of how to decide without knowing why (Claxton, 1998) and that unconsciously influence our choices
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(Bargh & Chartrand, 1999).

In the current paper, we report results from a simulation that investigates how (some of) the sug-

gested mechanisms underlying intuition perform in probabilistic inferences. Specifically, we generate

all possible decision tasks for choices between two alternatives based on six probabilistic binary cues.

The rational solution for this kind of task, i.e., the integration of cues coherent with the axioms of

probability theory, can be calculated according to Bayes’ theorem.1 We were interested in three re-

lated questions: a) how often do the mechanisms lead to choices that are in line with the rational

choice (mimicry), b) how often would mechanisms lead to correct choices (performance), and c)

which factors of the environment influence performance of each mechanism (moderators).

2. Previous Work

One reasonable assumption is that more complex and effortful decision strategies generally lead to

better decisions (Beach & Mitchell, 1978). Some studies, however, show that this assumption does

not hold in all environments. Payne et al. (1988), for example, show that under time constraints

simple lexicographic strategies (LEX; i.e., compare options by most probable outcomes and decide

in favor of one option if one outcome differentiates betweenoptions) can lead to better decisions than

weighted linear models such as weighted additive (WADD; i.e., weight outcomes by probabilities

and add them up). Also, simple heuristics like LEX were shownto perform well with respect to

accuracy in several real-world settings in which an outsidecriterion for assessment was available

(Czerlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer & Brighton, 2009; but see also Hilbig &

Richter, 2011). More systematic investigations of the performance of LEX and other decision rules

in probabilistic inferences show that strategy performance depends on the match between decision

rule and environment (Hogarth & Karelaia, 2007). Hence, certain strategies may be tailored to be

successful in specific environments.

3. Aims of the Current Study

In the current study we extend this previous work. First, we extend the scope of modeling by includ-

ing a network model (PCS) in addition to the standard mechanisms TTB, WADD, and EQW. TTB is a

prominent representative of LEX algorithms and EQW is a simple heuristic that sums up unweighted

1See, however, Cohen (1981) for a discussion on the rationality of Bayesian inference.
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cue values. Automatic implementations of TTB and EQW are processes underlying intuition accord-

ing to Gigerenzer (2007). Furthermore, various decision models in the literature predict choices that

follow weighted linear information integration (Busemeyer& Townsend, 1993; Roe, Busemeyer, &

Townsend, 2001). To avoid complex model simulations for those models, we used two implemen-

tations of WADD to approximate their performance. Furthermore, we added variants of PCS (i.e.,

PCS1, PCS2) which has been shown to account well for decisions (Glöckner & Betsch, 2008b), con-

fidence, and response time (Glöckner & Betsch, 2012; Glöckner& Bröder, 2011), coherence effects

(Glöckner, Betsch, & Schindler, 2010; Holyoak & Simon, 1999), and arousal (Hochman, Ayal, &

Glöckner, 2010) in probabilistic inferences. According toPCS, the mental representation of a task is

modeled as a connectionist network including salient cues and options as interconnected nodes and

their subjective validities and cue patterns as connectionweights (see Figure 1). Initial advantages

of one option are accentuated by a spreading activation mechanism that highlights cues favoring this

option and devaluates cues speaking against it. PCS thus mimics coherence processes in which the

interpretation of a decision situation is simplified by a systematic re-evaluation of information. The

two variants of the PCS model used in the simulations differ inthe k parameter of the transformation

function (see Figure 1, lower right). Parameter k can be interpreted as the individual sensitivity to

differences between validities. For k = 0 (k→ ∞) the relative weight between differing validities is 1

(→ ∞), that is, an individual shows no (infinite) sensitivity towards differences in validities. In past

studies, individually fitted k parameters varied between 1 and 3. For k = 1 (i.e., PCS1), transformation

is linear, whereas for k = 2 (i.e., PCS2), transformation is quadratic and thus reflects accentuation of

cues due to higher sensitivity (Glöckner & Bröder, 2011, p. 27).

Second, we do not use a few sampled environmental constellations only. To estimate the total

performance, we include all distinct tasks of choices between two options based on six probabilistic

cues by combining all possible cue patterns with all validity patterns. We classify these tasks along

different dimensions to learn about which environmental conditions render which kind of intuition

most successful.

Third, we determine the extent to which models mimic rational choice, and additionally we de-

termine the performance of the models as the relative numberof (expected) correct choices in the

environment. We therefore assess the degree to which intuitive mechanisms “violate coherence with

the implications of statistical theory” (Hogarth & Karelaia, 2007, p. 734), as formulated in the co-
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herence criterion of rationality, whereas earlier work often relied on the correspondence criterion of

rationality, that is, the extent to which models correspondwith an outside criterion.

4. Simulation

We assessed mimicry of the rational model and performance for different processes that are assumed

to underlie intuition in probabilistic inferences.

4.1 Environments

We investigated probabilistic decision making between twooptions with six binary cues. We included

all distinct tasks fully crossed with all possible sets of cue validities. From the total set of tasks

resulting from all cue patterns (i.e.,2× 6 cues with binary outcomes:26 × 26 = 4,096), we generated

a reduced set by excluding conceptually identical tasks. Wedropped patterns that a) were option-

reversed, b) differed in the sign of non-discriminating cues only (i.e.,−− vs. ++), and c) did not

differentiate between options at all which resulted in a qualified set of 364 cue patterns. In a second

step, we generated a reduced set of cue validity combinations for the six cues using interval sampling.

That is, we generated all combinations of cue validities ranging from .51 to .99 in steps of .03 for six

cues and ordered each combination from the highest to the lowest cue validity. Note that the order of

validities is negligible as long as all qualified tasks of an environment are sampled. We then deleted

all multiples with identical cue validities and combinations that contained the same cue validity at

least twice to assure that TTB makes unambiguous predictions. This resulted in 12,376 combinations

of validities in total.

4.2 Models for Intuitive Processes

The simulation involved two simple heuristics, TTB (take-the-best) and EQW (equal weight) from

the adaptive toolbox (Gigerenzer, Todd, & The ABC Research Group, 1999); two implementations of

weighted additive models (WADD) representing a whole classof intuition models, and neural network

implementations of intuitive processes according to Parallel Constraint Satisfaction (PCS; Glöckner

& Betsch, 2008a) differing in the sensitivity parameter k (see above). For each model and the rational

solution, the choice rule is described in Table 1.
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4.3 Dependent Variables

For each task, we determined the rational choice according to naïve Bayes and compared it against

the choices that result from applying the respective intuition model. We determined the posterior

probability (i.e.,pBayes
n ) of the more probable of two options in taskn given the cues by assuming

equal priors for each option and independence of cues (compare with Lee & Cummins, 2004, Formula

1, p. 345):

pBayes
n =















p(A>B|cues)
p(A>B|cues)+p(B>A|cues)

=

∏
i∈FA vi×

∏
i∈FB(1−vi)∏

i∈FA vi×
∏

i∈FB(1−vi)+
∏

i∈FB vi×
∏

i∈FA(1−vi)
if ≥ .50

1−
p(A>B|cues)

p(A>B|cues)+p(B>A|cues)
if < .50

(1)

The numerator is the product of validities over all cues favoring option A (i.e., FA) times the product

of (1 - validities) over all cues favoring option B (i.e., FB),which constitutes the probability of A being

greater than B for the observed cues. The denominator constitutes the sum of the nominator and the

probability of B being greater than A given the cues. Put differently, the probability of the target event

given the cues is set in proportion to the sum of the probabilities of all possible events given the cues.

Our first dependent measuremimicry of the rational solution is measured as the percentage of

choice overlap between the Bayesian and each intuition model. Note that the rational solution could

either suggest one or be inconclusive between options. Thus, a baseline of 33.3% of choice overlap

can be expected by chance. The second dependent measure is performance, which is the percentage of

correct choices that can be expected when applying model k (i.e.,pk). Hence, expected performance

of each model over all tasksn = 1 . . . N can be calculated by:

pk =

N
∑

n=1

1

N
×



































pBayes
n if model k overlaps withBayes

1− pBayes
n if model k does not overlap withBayes

.50 if model k is inconclusive

(2)

If the model (does not) overlap(s) with the Bayesian solution, the probability for a correct decision

equals the (complementary) probability according to Bayes.If the model does not make a prediction,

a choice is based on guessing and thus correct with a probability of .50 (assuming that options always
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differ on the criterion).

Hence, mimicry measures the approximation of the Bayesian solution, whereas performance mea-

sures the expected accuracy of resulting choices.

4.4 Design

We determined mimicry and performance based on a complete crossing of the reduced sets of tasks

and validities (i.e.,364 × 12, 376 = 4, 504, 864 choices). To investigate potential moderators, the

influence of three variables capturing characteristics of the task on these measures was analyzed. We

categorized tasks as easy, intermediate or hard according to the posterior probability of the more

probable optionpBayes
n . A taskn is categorized as hard ifpBayes

n < .65, as easy ifpBayes
n > .85, and

as intermediate for values in-between.2 We further categorized tasks according to the mean and the

standard deviation (SD) of the set of six cue validities. That is, a task is categorized as a low mean

(SD) task if the mean (SD) of its validities belongs to the bottom 25% of all means (SDs), as high

if it belongs to the top 25% of all means (SDs), and as intermediate for values in-between.3 In total,

the simulation consisted of 6 (models)× 3 (task difficulty)× 3 (mean of validities)× 3 (standard

deviation of validities)= 162 conditions.

4.5 Hypotheses

We predict less mimicry of the rational choice model and lower performance with increasing task

difficulty (H1). If a task is easy, that is, if cues strongly support one option, it is (more) likely that

all models are in line with the rational choice. We further predict less mimicry with increasing mean

validities (H2). This hypothesis rests on the observation that for extreme probabilities (e.g., cue validi-

ties) linear approximations of rational solutions tend to become worse (Juslin, Nilsson, & Winman,

2009). Finally, based on previous work (Hogarth & Karelaia,2007), we predict that the performance

and mimicry of models depend on the standard deviation of cuevalidities. With increasing standard

deviation the environment becomes less compensatory. Non-compensatory information integration al-

gorithms such as TTB should be better in mimicry of the rational choice model in non-compensatory

(as compared to compensatory) environments (and vice versafor EQW) (H3). An algorithm that

successfully approximates the rational solution will be chosen more frequently by adaptively learning

2Specific cutoff values are arbitrary. We provide a regression analysis in the next section that supports our conclusion
from the plotted data.

3We checked that the pattern of results is not dependent on theexact values chosen as categorization criteria.
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individuals over time. Due to the observed prevalence of PCS in probabilistic inferences in past stud-

ies, we therefore predicted that PCS would provide the best approximation in the model comparison

(H4).

5. Results

5.1 Mimicry of Rational Solution

In line with our hypothesis, PCS2 shows the highest overlap (88.8%) with the rational choice model

averaged over all tasks (Figure 2, left panel). The other models–except for EQW–also overlap consid-

erably well with the rational solution (WADDcorr = 86.5%, TTB = 83.3%; EQW = 57.6%). Averaged

over all environments and strategies, the percentage of overlap increases from 63.3% to 94.7% with

decreasing task difficulty (Figure 2, middle left panel), supporting our first hypothesis. Furthermore,

we observe that overlap decreases from 83.8% to 74.0% when the mean of cue validities increases

(middle right panel), which supports our second hypothesis. Without being hypothesized, we also

observe that overlap decreases from 82.1% to 76.2% when the standard deviation of cue validities

increases (right panel).

To explore interactions between models and task characteristics, all conditions are plotted in Figure

3. All models are affected similarly by task difficulty and the mean of cue validities. Choice overlap

is lower for difficult tasks and tasks with a high mean of cue validities. In accordance with H3,

model overlap depends on the standard deviation of cue validities. The mimicry of rationality of

the compensatory models decreases with increasing standard deviation (model average: from 82.4%

to 74.3%). Overlap, however, increases with increasing standard deviation of cue validities for the

non-compensatory model from 80.5% to 86.0%.

5.2 Performance

As a second dependent variable we analyzed the performance of each model, that is, the expected pro-

portion of correct choices in the environment (i.e.,pk, see Formula 2). Averaged over all conditions,

PCS2 shows the highest performance with 73.7% correct choices, closely followed by WADDcorr with

73.1%, TTB with 71.8%, PCS1 with 70.1%, WADDuncorr with 69.2%, and EQW with 64.9%. For

difficult tasks, all models are close to chance level of .50 (Figure 4, left panel). For easy tasks (right

panel), PCS2, WADDcorr, and TTB are close to 100%. For tasks with intermediate difficulty (middle
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panel), PCS2 and WADDcorr lead on average to higher performance (71.1% and 70.3%) thanTTB

(68.4%).

Note that there exist few constellations in which TTB outperforms all other strategies. This is the

case if the mean of the cue validities is low to intermediate and the standard deviation of validities is

high (i.e., when the environment is non-compensatory).

5.3 Predicting Mimicry of Rational Solution

To predict the overlap with the rational solution for different environments, we conducted a logistic

regression predicting mimicry of the Bayesian choice by environmental factors and type of model

(Table 2). In line with the results already reported, overlap increases for easier tasks, but decreases

with increasing average and standard deviation of cue validities. The coefficients represent changes

in odds (i.e., p/(1-p)) that result from one unit change in the predictor. Odds above 1 indicate positive

predictors. The odds for an overlap with the rational choicemodel, for example, are twice as high

for PCS2 in comparison to TTB when controlled for task difficulty, mean validities, and the standard

deviation of validities in a logistic regression. Conversely, the odds reduce by factor 0.003 (= 1 /

333.3) when cue mean validities (hypothetically) change by1 point.

We also tested an extended regression model in which all two-way interaction terms of strategies

with standard deviation of validities were included. In line with our interaction hypothesis (H3),

with increasing standard deviation of validities the odds for an overlap with the rational choice model

decrease for all compensatory models in comparison to TTB, although the effect of the additional

interactions is negligible (∆ PseudoR2 = .01) and therefore results are not displayed here.

6. Discussion

In many everyday decisions persons will not have the time and/or the cognitive capacity to calculate

rational solutions deliberately. Persons have to rely on approximations of rationality based on simpli-

fied deliberate rules and/or on automatic-intuitive processes. In the current paper we have investigated

the degree to which different algorithms suggested to describe intuitive processes approximate the ra-

tional solution.

In line with our expectation, we observed that overall a parallel constraint satisfaction model

showed highest mimicry of the rational solution (88.8%) andthus also best performance (73.7%)
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among all considered models. Assuming that individuals learn to select particularly successful al-

gorithms over time (from an ontogenetic and phylogenetic learning perspective), this converges with

previous findings indicating that PCS processes seem to prevail in probabilistic inferences (see intro-

duction for references).

However, a chance corrected weighted additive algorithm which was used as placeholder for other

complex models of intuition (e.g., Busemeyer & Townsend, 1993) fared only slightly worse concern-

ing performance than PCS. Simple heuristics showed lower performance on average, although there

were a few environmental constellations (high SDs of validities) in which TTB outperformed all other

models. Furthermore, it should be kept in mind that our results on model performance are based on

the simplifying assumption that all distinct choice problems have an equal probability of appearing in

the real world, which might be debatable. Nevertheless, overall mimicry and performance seem to be

generally robust since PCS also performs best for the majority of considered problem subsets.

We were also able to identify environmental moderators of mimicry and performance. As expected,

mimicry and performance is higher for easier tasks and for tasks with low average cue validities. We

also showed that compensatory models have better mimicry for compensatory environments (i.e., low

standard deviation of cue validities), as compared to more non-compensatory environments (i.e., high

standard deviation of cue validities), and vice versa for non-compensatory mechanisms. Considering

the overall dominance of PCS and WADDcorr, it might be questioned from a reinforcement learning

perspective whether the advantage in performance of TTB under few environmental conditions would

be sufficient to make persons choose this algorithm.

Overall, we conclude that implementations of intuitive processes that rely on PCS or chance-

corrected weighted additive cue integration approximate the rational solution very well. Considering

that Bayesian calculations are effortful and connected withhigh opportunity costs, and taking into

account that even small errors in these deliberate calculations can lead to severe mistakes (Hammond,

Hamm, Grassia, & Pearson, 1987), it will often be optimal–even based on rational strategy selection

considerations (Beach & Mitchell, 1978)–to apply quick automatic-intuitive information integration

algorithms such as PCS instead of slow deliberate Bayesian calculation.
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TABLES

Table 1: Models and choice rules.

Class of Models Name of Model Choice Rule

rational choice naïve Bayes choose the option with the higherprobability
assuming–for matters of simplification–equal
priors for both options and independence of
cues

adaptive toolbox take-the-best (TTB) choose the option according to the most valid
cue that discriminates between options

equal
weighting (EQW)

choose the option with the higher number of
positive cue values

weighted additive weighted additive
uncorrected
(WADDuncorr)

choose the option with the higher sum of cue
values weighted by cue validities that are not
corrected for chance-level

weighted additive
corrected (WADDcorr)

choose the option with the higher sum of cue
values weighted by cue validities that are cor-
rected for chance-level (i.e., validity-.50)

neural network parallel constraints
satisfaction model
(PCSk)

choose the option with the higher activation of
the option node



The Rationality of Intuitive Decision Processes 16

Table 2: Logistic regression predicting mimicry of the rational choice model by type of intuition

model, task difficulty, and mean and standard deviation of validities.

Mimicry

Independent Variables Odds Ratios

Task Difficulty (posterior probability) 1976.041

Mean Validities 0.003

SD Validities 4× 10−5

Intuition Model (control = TTB)

EQW 0.143

WADDuncorr 0.544

WADDcorr 1.484

PCS1 0.660

PCS2 2.000

Note. Intuition model is dummy-coded; PseudoR2 = .24.
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FIGURES

cue1 cue2 cue3 cue4 cue5 cue6

option1 option2
−0.2

wci−ok
 = [+.01,−.01]

wvi
 = (vi − 0.5)k

PCS1: k = 1

PCS2: k = 2General
Validity

option1 option2
+ −
+ −
+ −
+ −
− +
− +

cue1
cue2
cue3
cue4
cue5
cue6

Figure 1: Exemplary task (lower left) represented in the PCS network.Cues and options are bidirec-

tionally interconnected nodes. Cue validitiesvi are transformed into weightswvi according to a trans-

formation function (lower right) and attached to the connections between the General Validity node

and the cues (linewidth indicates size of weights). (Non-)supportive cues (− or +) are transformed

into (inhibitory or excitatory) weightswci−ok (upper right) that are attached to the connections be-

tween the cues and the options (dotted or continuous lines).Activation weighted bywvi spreads from

the General Validity node into the network. Node activations are updated iteratively until changes in

activation are negligible (< 10−3). Maximum and minimum node activations are set to−1 and1,

decay is set to.05; see Glöckner and Betsch (2008a) for details.
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Note. For hard vs. easy tasks posterior probability is < .65 vs. > .85.

Figure 2: Mimicry of the rational choice model by (from left to right panel) intuition model, task

difficulty, mean validities, and standard deviation of validities.
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