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Abstract

Learning is a crucial requirement for efficient decision making in the real world. Learners are able to

adapt to decision-environments and also respond to changes in those environments. Previous research

in the field of judgment and decision making has often ignored aspects of learning by focusing on one-

shot decisions and static environments only. In this article, we develop an integrative model for decision

making and learning by extending previous work on parallel constraint satisfaction networks with an

algorithms of backward error-propagation learning. The Parallel Constraint Satisfaction Theory for

Decision Making and Learning (PCS-DM-L) conceptualizes decision making as process of coherence

structuring in which learning is achieved by adjusting network weights from one decision to the next.

PCS-DM-L predicts that individuals adapt to the environment by gradual changes in cue weighting.

This prediction competes with the fundamental assumption of adaptive decision making approaches,

assuming that learning and adaptation to environmental changes takes place mainly at the level of

strategies, which is formalized in the theory of strategy selection learning (SSL). In three studies we

find that PCS-DM-L is more suitable to predict behavior than SSL.
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1. Introduction

To make rational decisions and to avoid disastrous outcomes, individuals often need to infer criteria

that are not directly observable. The distance of an approaching car, for example, cannot be directly

observed but has to be judged from proximal depth-cues (e.g., texture-gradient). Similarly, whether a

person lies or tells the truth in an interpersonal interaction cannot be directly observed but has to be

inferred from cues that are probabilistically related to the distal criterion of interest. Correct inferences

necessitate that a) individuals hold to some degree valid beliefs concerning the relation between cue

and criterion and that they b) are able to use them in a ways that leads to reasonable outcomes.

While research in the tradition of the heuristics and biases program (e.g., Kahneman & Tversky,

1973) has focused on the issues of information usage and integration, the Brunswikian Lens Model

(Brunswik, 1952) has inspired a wealth of research in which also the match between environmental

structure and beliefs is taken into account. In this line of research, in which the structure of the en-

vironment and cue usage by individuals are investigated simultaneously, it has been shown that the

accuracy of judgments in various domains is fairly high (judgmental achievement; see Karelaia &

Hogarth, 2008, for a review). This finding can be considered to indicate that individuals hold rea-

sonable accurate (implicit or explicit) beliefs concerning cue-criterion relations and are able to use

them appropriately. Interestingly, however, studies investigating people’s ability to learn cue crite-

rion relations (e.g., Brehmer, 1969; Chasseigne, Mullet, & Stewart, 1997; Hammond, Summers, &

Deane, 1973) yielded mixed results. It has been shown that judgmental accuracy can be increased by

providing repeated feedback concerning the accuracy of a judgment (outcome feedback) in relatively

simple tasks (e.g., Adelman, 1981; Doherty et al., 1988; Hirst & Luckett, 1992; Muchinsky & Dudy-

cha, 1975) but less so in complex and uncertain tasks (e.g., Brehmer, 1980; Hoffman, Earle, & Slovic,

1981). Providing direct information about cue-criterion relations (task information feedback) is more

efficient than outcome feedback (Balzer, Sulsky, Hammer, & Sumner, 1992; Reilly & Doherty, 1992;

see also Brehmer, 1980) but from a practical perspective it has to be acknowledged that such explicit

information will not be available in many real world situations.

One limitation of the work on the lens model was, however, that research followed an “as-if” ap-

proach that allowed to predict outcomes but remained largely silent concerning specifics of the underly-

ing cognitive processes for information integration (Doherty & Brehmer, 1997; but see also Hoffmann,

1960). According to the work on bounded rationality (Simon, 1956), the development of psycho-
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logically reasonable models requires to take into account characteristics of the decision maker (e.g.,

limited memory capacity) and characteristics of the environment (e.g., local distribution of resources

and information) simultaneously. One crucial aspect thereby is that people’s capacity for deliberate

cognitive calculations is limited and it is therefore assumed that “[p]eople satisfice—look for good-

enough solutions—instead of hopelessly searching for the best” (Simon, 1990, p. 17).

Considering the task to infer criteria based on probabilistic cues, individuals already face a daunting

task. Individuals (i) have to (explicitly or implicitly) know what the relevant cues are and how well

they predict the criterion, they (ii) have to search for cues in memory or the environment, and they (iii)

have to integrate them to determine the criterion and to select one of the available options. Importantly,

in natural environments decision making does not end at this stage. People are involved in a continuous

stream of inferences and actions in which feedback on (and consequences of) previous actions are used

to reduce the gap between reality and predictions in order to improve the quality of subsequent choices

(Clark, 2013). Specifically, to improve over time individuals (iv) have to learn. The question how

learning in this continuous stream of inferences and choices can be cognitively modelled is investigated

in the current paper. We contrast two fundamentally different mechanisms: individuals update cue-

criterion relations only vs. individuals learn to select better strategies for integrating cues.

The currently prevailing view of adaptive decision making (e.g., Beach & Mitchell, 1978; Gigeren-

zer, Todd, & The ABC Research Group, 1999; Payne, Bettman, & Johnson, 1988, Scheibehenne,

Rieskamp & Wagenmakers, 2013) assumes the second mechanism. According to this approach, in-

dividuals rely on a set of qualitatively different strategies for making decisions. Strategies differ in

their complexity and most specified strategies are heuristics, that is, rules of thumb that simplify the

decision-situation by ignoring parts of the information and using simple rules for information inte-

gration. It is assumed that individuals select strategies adaptively to environmental and situational

demands and learn to adapt to the environmental structure by learning to select the most successful

strategy. Learning to choose the right strategy for the right environment has been formalized in the

Strategy Selection Learning Theory (SSL; Rieskamp & Otto, 2006), which has also received some

empirical support (Rieskamp, 2006, 2008; Rieskamp & Otto, 2006).

Single-mechanism models for judgment and decision making, in contrast, assume that processes

can be described by a single mechanism for information integration (e.g., Busemeyer, Pothos, Franco,

& Trueblood, 2011; Busemeyer & Townsend, 1993; Dougherty, Gettys, & Odgen, 1999; Fiedler,
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2000; Glöckner & Betsch, 2008; Lee & Cummins, 2004; Newell, 2005; Pleskac & Busemeyer, 2010;

Thomas, Dougherty, Sprenger, & Harbison, 2008; Trueblood, Brown, & Heathcote, in press). Given

that these models do not contain the concept of strategies in the first place, learning cannot take place

on this conceptual level and has to be based on changes in cue-criterion relations only. In the cur-

rent paper we will focus on one specific kind of models within the class of single mechanism models,

namely Parallel Constraint Satisfaction (PCS) Models. PCS models are based on interactive activa-

tion networks that have been originally developed in the Parallel Distributed Processing framework for

describing processes of perception (McClelland & Rumelhart, 1981) and beyond (McClelland, Rumel-

hart, & The PDP Research Group, 1986; Rumelhart, McClelland, & The PDP Research Group, 1986;

see also McClelland, Botvinick, Noelle, Plaut, Rogers, Seidenberg, & Smith, 2010). PCS networks

that model cognitive processes as coherence structuring between bottom-up (e.g., percepts, data, facts)

and top-down (e.g., concepts, theories) influences, have been successfully applied to a wide variety of

cognitive phenomena (e.g., Thagard, 1989; Holyoak & Thagard, 1989; Shultz & Lepper, 1996; Read,

Vanman & Miller, 1997; Monroe & Read, 2008; Read, Monroe, Brownstein, Yang, Chopra, & Miller,

2010; Freeman & Ambady, 2011). Most importantly, PCS models for judgment and decision making

(Glöckner & Betsch, 2008; Holyoak & Simon, 1999) were particularly successful in explaining multi-

ple facets of behavior in probabilistic inference tasks in the domain of legal reasoning (e.g., Thagard,

2003; Simon, Chadwick & Read, 2004) and beyond (e.g., Brownstein, Read, & Simon, 2004; Glöck-

ner, Betsch, & Schindler, 2011; Glöckner & Betsch, 2012; Glöckner & Bröder, 2011, 2014; Söllner,

Bröder, Glöckner & Betsch, 2014).

One fundamental shortcoming of several PCS accounts developed so far is that they usually only

account for information integration given a certain network structure. How this network structure

emerges is usually beyond the scope of the model (Shulz & Lepper, 1996) and sometime rests on ad-

hoc assumptions. Consequently learning and adaptation of networks is usually not part of the models

and investigations reported so far focus on situations that do not resemble the full complexity of the

stream of decisions introduced above. In this paper we aim to close this theoretical and empirical

gap by extending the PCS model for decision making (Glöckner & Betsch, 2008) by a formalized

learning-algorithm, testing its empirical adequacy to describe behavior.
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1.1 The multi-strategy view: Learning to select strategies

The adaptive decision making perspective assumes that people rely on a collection of simple but suc-

cessful algorithms that are selected contingent on environmental demands (e.g., Gigerenzer, Todd,

& The ABC Research Group, 1999; see also Beach & Mitchell, 1978; Payne, Bettman & Johnson,

1988). The research program on the adaptive toolbox (Gigerenzer, Hertwig, & Pachur, 2011; Gigeren-

zer, Todd, & The ABC Research Group, 1999) is a prominent approach to the ecological rationality

of decision making. Decision makers choose adaptively from a set of heuristics that are defined as

simple, fast, and frugal. The heuristics proposed are postulated as cognitive algorithms of decision

making. They are assumed to be ecologically rational and psychologically sound models of human de-

cision making. For example, a decision maker following the prominent take-the-best heuristic (TTB)

looks for cues in order of cue validities and decides in line with the first cue that discriminates be-

tween options (Gigerenzer & Goldstein, 1996). It has been shown that TTB performs comparable and

sometimes even superior in making correct decisions in comparison to much more complex compen-

satory strategies in various decision environments (Czerlinski et al., 1999; Gigerenzer & Brighton,

2009; Martignon & Hoffrage, 1999) and under various environmental constraint (Hogarth & Karelaia,

2006a, 2006b; Katsikopoulos, Schooler, & Hertwig, 2010). It has also be shown in numerous studies

that people behave in line with heuristics given environmental constraints like time pressure or high

information-cost (e.g., Bröder, 2000a, 2000b, 2003; Todd et al., 2010). For the heuristics from the

adaptive toolbox, a prominent learning algorithm has been proposed and tested: The strategy selection

learning theory (Rieskamp, 2006, 2008; Rieskamp & Otto, 2006) assumes that people learn to pick the

most successful strategy by experience through external feedback. SSL is not restricted to the simple

heuristics from the “adaptive toolbox”. The main assumption is that through feedback, reinforcement

commences at the level of strategies, meaning a set of cognitive operations employed to solve a task.

1.2 Single mechanism models: Learning to adapt cue-weights in network models

The second complementary perspective focuses less on limitations of deliberate cognitive capacity,

drawing instead on the broad knowledge concerning the existence of computationally powerful cogni-

tive mechanisms (see Glöckner & Witteman, 2010, for a review). It has been repeatedly shown that

cognitive mechanisms of memory activation and perception (e.g., McClelland & Rumelhart, 1981),

the construction of meaning (Thagard, 1988, 1989), attitude formation (e.g., Monroe & Read, 2008),
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and many more can be modeled as PCS networks. These models have also been applied to account for

judgment and decision making processes (e.g., Betsch & Glöckner, 2010; Glöckner & Betsch, 2008;

Holyoak & Simon, 1999; Thagard & Millgram, 1995). In the most recent implementation of PCS

for decision making (Glöckner & Betsch, 2008; Glöckner, Hilbig, & Jekel, 2014), it is assumed that

the default mode of cue integration is automatic and parallel. Deliberate processes only intervene if

the parallel processes of cue integration do not lead to a sufficiently coherent interpretation. PCS for

probabilistic decision making has been shown to lead to good decisions in various environments (Jekel,

Glöckner, Fiedler, & Bröder, 2012) and to be a valid account of decision-behavior in various domains

(Glöckner & Betsch, 2008, 2012; Glöckner, Betsch, & Schindler, 2010; Glöckner, Heinen, Johnson, &

Raab, 2010).

For PCS approaches to decision making, work on adaptation to the environment by learning from ex-

perience is mathematically complex, and convincing solutions are still largely missing. Additionally,

the neglect of learning models for PCS networks has been criticized (Smith, 1996; Van Overwalle,

1998). However, there are some noteworthy attempts to implement learning rules into related net-

work models, which can be used as starting point (Johnson, Zhang, & Wang, 1997; Vanhoomissen

& Van Overwalle, 2010; Van Overwalle & Siebler, 2005). In the literature on network learning, the

Delta-rule—an algorithm of backpropagation that shares properties with the Rescorla-Wagner model

of learning (Rescorla & Wagner, 1972; Van Overwalle, 2007)—has proven to be successful (Bechtel

& Abrahamsen, 2007; Rumelhart, Hinton, & Williams, 1986; Rumelhart & McClelland, 1986). In the

following, we introduce the formalization of the parallel-constraint satisfaction network of modeling

learning in probabilistic decision making. In contrast to the SSL theory, this approach assumes that

validities for the cues are updated by feedback, thus changing weights in the network structure. The

integration mechanism for the information rests on spreading activation and does not change through

learning.

2. Implementing learning in PCS

A model of learning in probabilistic decision-making needs to address how people learn probabilistic

cue-criterion relations between decision-trials based on feedback, how people make decisions in each

trial based on those learned relations, and how both processes relate to each other. The process of

decision making in PCS has already been formalized elsewhere (Glöckner & Betsch, 2008) and will
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be briefly summarized in the following section. We then introduce the extension of PCS by adding the

modified Delta-rule for learning of cue-criterion relations between trials. To facilitate understanding

of the formalization of PCS introduced next, we also provide the code of the implementation of PCS

in the statistical software-package R (R Team, 2014) in Appendix C.

2.1 Primer of PCS

The decision-situation—that is, participants’ representation of the cue pattern, subjective validities

for cues, and the decision-alternatives—is represented in a symbolic network-model (Figure 1). The

decision-process is simulated as an iterative process of spreading activation in the network.

asource

acue1,i,t acue2,i,t acueL,i,t

aopt1,i,t aopt2,i,t aoptK,i,t

wcue1,t wcue2,t wcueL,t

wcue1−opt1,t wcue1−opt2,t

wcue1−optK,t wcue2−opt1,t

wcue2−opt2,t

wcue2−optK,t wcueL−opt1,t

wcueL−opt2,t wcueL−optK,t

wopt1−optK

wopt1−opt2 wopt2−optK

...

...

Answer−Format

Cue−Pattern t

Validity−Weights

Attention

Cues

Options

Figure 1. The parallel-constraint-satisfaction network-model of decision making (c.f. Figure 1, Glöck-

ner & Betsch, 2008, p. 2).

2.1.1 Decision-situation as represented in the network-model

The network-model consists of nodes that are interconnected. Cues are represented in the middle

layer of the network as nodes {cue1, cue2, . . . , cueL}, choice-options are represented in the upper

layer as nodes {opt1, opt2, . . . , optK}. From a general source node constant activation spreads into

the network by an iterative updating-algorithm that simulates the decision-process. In total there are

N = L+K + 1 nodes in the model in three layers. The cue pattern of trial t is represented as weights
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{wcue1−opt1,t, . . . , wcueL−optK ,t} attached to the bi-directional connections between K = 2 options and

L = 5 (Exp. 1 and 2), and L = 6 (Exp. 3) cues. Weights can be excitatory (positive) or inhibitory

(negative): A weight between a cue and an option receives a value of +.01 when it speaks for the

option and a value of −.01 when it speaks against the option. The subjective validities of the cues are

represented as weights {wcue1,t, . . . , wcueL,t} attached to the connections between the source-node and

the cue-nodes. Validity-weights are positive when the presence of a cue for an option is associated with

a higher likelihood of being the better option and negative when the absence is associated with a higher

likelihood. All option-nodes are connected with negative weights {wopt1−opt2,t, . . . , wopt(K−1)−optK ,t}.

In the simulations, we set wopt1−opt2,t equal to −.2, mapping the answer-format of a forced-choice

between two options in the decision task (i.e., choosing an option inhibits choosing the alternative

option).1 How the process of decision-making is simulated in the network in trial t is explained next.

2.1.2 Simulating the process of decision-making

Nodes can change their activation a in an iterative process i = {1, 2, . . . , I}. In the first iteration i = 1,

the source node is activated with an activation of 1. In the second iteration i = 2, the attention is

directed towards the cues: Weighted activation spreads from the source-node to the cue-nodes. In the

third iteration, activation continues to spread from the source-node to the cue-nodes but also spreads

from the cue-nodes to the option-nodes. The property of bi-directional links distinguishes PCS from

other prominent network models (Gluck & Bower, 1988) and leads to distinct predictions concerning

coherence effects in the process of decision making (Glöckner, Betsch, & Schindler, 2010; Holyoak &

Simon, 1999). In the fourth iteration, activation spreads from the source-node to the cue-nodes to the

option-nodes but also from the option-nodes back to the cue-nodes. The input of activation for each

node p for iteration i and trial t is calculated by (cf., Glöckner & Betsch, 2008, Formula 2, p. 218):

inputnodep,i,t =

Q=N∑
q=1,q 6=p

wnodeq−nodep,t × anodeq ,i,t. (1)

The input for each node results from the weighted activations of the nodes attached to the target-

node. The activation a for each node p at iteration i + 1 results from the previous activation at t and a

weighted input to the node according to the following function (cf., Glöckner & Betsch, 2008, Formula

1Conclusions are not dependent on the exact value used.
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1, p. 218):

anodep,i+1,t = anodep,i,t × (1− decay) + inputnodep,i,t×
(anodep,i,t − floor) if inputnodep,i,t < 0

(ceiling − anodep,i,t) if inputnodep,i,t ≥ 0

(2)

Activation at iteration i+1 results from the summed activation at iweighted by the factor decay = .1

(i.e., the impact of prior activations decrease over iterations) and the weighted input (i.e., activations

can only range between ceiling = 1 and floor = −1 in a sigmoid function). The overall negative

energy in the network is defined by (c.f., Read, Vanman, & Miller, 1997, p. 30):

energyi,t = −
P=N∑
p=1

Q=N∑
q=1,q 6=p

wnodep−nodeq ,i,t × anodep,i,t × anodeq ,i,t. (3)

The activation of connected nodes are multiplied with the weight of the connection. Negative energy

approximates the minimum over iterations of updating activations given the constraints of the network

(Hopfield, 1982, 1984; Read, Vanman, & Miller, 1997). When the negative energy from iteration

i = I − 1 to iteration i = I changes negligibly, updating of node-activations is stopped and the

simulation of the decision-process in the network is terminated. The option-node with the highest

activation at iteration I is the predicted option chosen by the participant for trial t. The number of

iterations I is used as a proxy for predicting decision-times. Participants’ learning of cue-validities is

represented by updating validity-weights after receiving feedback in trial t according to the modified

Delta-rule as explained next.

2.2 Simulating learning: A modified Delta-Rule

Validity-weights in the network are updated using a modified Delta-rule based on the final activations

of the option-nodes. The difference between the observed activations of option nodes aoptk,I,t and a

desired level of activation daoptk,I,t
determines the weights wcuel,t for time t + 1. Validity-weights are

changed by ∆wcueq ,t according to the following modified Delta-rule (cf. Bechtel & Abrahamsen, 2007;

Rumelhart & McClelland, 1986):

∆wcueq ,t = λ×
P∑
p=1

[(daoptp,I,t − aoptp,I,t)× wcueq−optp,t] (4)
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A larger difference between desired and observed activation daOk
−aOk

for trial t at the final iteration

I of the decision process results in a larger change in weights. The learning rate λmoderates the impact

of a single decision trial on the change of the weights and thus moderates the speed of learning. For

example, in the decision trial t = 1 the weight wcue1,t of cue1,t (i.e., its subjective validity) might be

positive and the weight wcue1−opt1,t negative, that is, cue 1 speaks against option 1. After the network

settled its activations in the final iteration I , the activation for option 1 aopt1,I,t might be positive due

to the other cues 2 . . . I in the network. Let us assume the desired activation daopt1,I,t was positive at

.6, that is, PCS chooses the correct option (aopt1,I,t and daopt1,I,t are both positive) irrespective of the

incorrect prediction of cue 1 for option 2.2 Updating via the Delta-rule results in a lower weight wcue1,t

since a lower (i.e., ultimately negative weight) would have produced a correct prediction for option

1.3 Note that λ is the only free parameter in the equation, the desired activation for option-nodes and

the observed activation of option-nodes follow from the PCS simulation in the preceding decision.

Updating of weights is done according to:

wcuep,t+1 = wcuep,t + f(∆wcuep,t). (5)

The function f(∆wcueit) leads to a sigmoid function to assure that net-weights can only vary between

+1 and −1 (McClelland & Rumelhart, 1981):

f(∆wcuep,t) = ∆wcuep,t ×


(1− wcuep,t) if wcuep,t ≥ 0

(1 + wcuep,t) if wcuep,t < 0

(6)

2.3 Deriving choice probabilities

We test two different algorithms to derive choice-probabilities from the activation of option-nodes in

PCS that tap different psychologically plausible properties of the decision maker.

2The desired activation is not set to -1 and +1 because the proposed network with five or six cues and two options can
only maximally and minimally (i.e., all validity-weights set at 1 and all cues pointing towards one option) produce
activations for option-nodes between ' −.63 and ' .63.

3For matters of simplification in the example, only daopt1,I,t
and aopt1,I,t are compared. To determine ∆wcue1,t, it is

further necessary to make the remaining comparisons daopt2...K,I,t
with aopt2...K,I,t

for wcue1,t−opt2...K,t
(see sigma

sign in the formula).
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2.3.1 Sensitivity to the strength of evidence

The first approach relies on the difference in the activations of the two option nodes in PCS as a proxy

for choice-probabilities. A high activation for one option and a low activation for the the other option

result from an interplay between an unambiguous cue-pattern in a trial (e.g., most cues favor one op-

tion) and high net-weights for connections between the source node and validity nodes (i.e., a clear

cue-pattern does not necessarily maximize the difference between node-activations when net-weights

for validities are low or indistinct from each other). As indirect evidence that differences in node-

acitvations map to choice probabilities, it has been shown in various studies that those differences

relate to observed confidence judgments in participants’ decisions (Glöckner & Betsch, 2008). Thus,

we assume that an increasing difference in node-activations for options is related to more extreme pre-

dicted choice-probabilities. Thus, for trial t given activation aoptc,I,t chosen by the participant and the

activation for the option not chosen aoptnc,I,t, the choice probability can be calculated by (cf. Glöckner,

Heinen, Johnson, & Raab, 2012, p. 331):

pt =
eγ×aoptc,I,t

eγ×aoptc,I,t + eγ×aoptnc,I,t
. (7)

For each cue-pattern t = {1 . . . T}, the exponential of the activation of the option chosen by the

participant aoptc,I,t is divided by the sum of the exponentials of the activations for both options. The

probability of the chosen option is high when the activation of the node representing the chosen option

is high in comparison to the unchosen option. Note that the parameter γ accounts for individual dif-

ferences in how differences in node-activations map to choice-probabilities. A decreasing γ results in

a decreasing sensitivity to the activations of the options in the network (e.g., for γ = 0, probabilities

for both options are .5, that is, a participant is insensitive to differences in node activations). The max-

imum log-likelihood of all choices of a participant can be calculated by finding for each participant the

individual parameters of the learning rate λ in the interval [0, 2] and the sensitivity in the transformation

function γ in the interval [0, 5] that maximize:

ln(LPCSTransf) =
T∑
t=1

ln(pt). (8)
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2.3.2 Noisy learning

The second approach assumes that learning of cue-validities and thus updating of validity-weights

in PCS is not deterministic (Equation (5)) but noisy. This approach shares the same Delta-learning-

rule for updating net-weights with the other approach of implementing learning in PCS but differs on

how deterministic predictions of PCS are transformed into probabilistic predictions by assuming that

updating of cue-validities is partially probabilistic due to unsystematic error in the learning process.

To simulate noisy updating of validity-weights in PCS for trial t, a random number from a normal

distribution with a mean of 0 and a standard deviation of ρ is added to the validity-weight after each

trial t:

wρcuep,t+1 = wcuep,t+1 +Nt(0, ρ). (9)

To determine the prediction for the choice-probability for an option in trial t for a participant, we

simulateN = 1,000 PCS-models solving all T cue-patterns differing only in the random-noise compo-

nent Nt(0, ρ) with a standard deviation ρ fixed at a specific value. We then use the percentage of PCS-

models that choose the option selected by a participant in the study as the predicted choice-probability

for the option (e.g., when 900 out of 1,000 simulated participants choose option 1 for cue-pattern t,

p(opt1,I,t) = .90). The maximum log-likelihood of all choices of a participant therefore results from

the individual parameter of the learning rate λ in the interval [0, 2] and the standard deviation of the

error ρ in the interval [0, .05] that maximize:

ln(LPCSNoise) =
T∑
t=1

ln[p(optc,I,t)]. (10)

From a modelling perspective, this approach also circumvents the need for addtional assumptions

on how to model error (e.g., trembling-hand error in SSL; error in accordance with a logistic-function

in PCSTransf) when the prediction of a deterministic model does not overlap with an observed choice by

a participant (Myung, Pitt, & Kim, 2005).

3. Competitor model: Strategy-Selection-Learning theory

The strategy selection learning theory from the adaptive toolbox has been introduced elsewhere in

detail (Rieskamp, 2006, 2008; Rieskamp & Otto, 2006); we limit our description of the theory to a



Learning in Dynamic Probabilistic Environments 14

conceptual summary and spell out the formalization in Appendix A. People possess a set of strategies

that they can pick from to solve a decision task. A prominent non-compensatory strategy is the Take-

the-best heuristic: A decision is based on the most valid cue that discriminates between choices options.

A prominent compensatory strategy is Weighted Additive: Cues are weighted by validities and then

summed for each option. The option with the higher weigthed sum is predicted to be chosen by

the participant (Appendix A.2). This set of strategies is not exhaustive but the authors of SSL (s.a.)

included those two strategies representative for (non-)compensatory strategies only in prior studies and

we therefore also do so.

According to this strand of theorizing, people need to update cue-validities between trials because

strategies rely on cue-validities (i.e., Take-the-best: cue-search by validities; Weighted Additive: Weight-

ing by validities) and people need to learn which of the two strategies to pick in order to adapt to a

(non-)compensatory environment. Validities are updated according to an event-counter (Gigerenzer &

Goldstein, 1996; Gigerenzer, Tood, & The ABC Research Group, 1999; Martignon & Hoffrage, 1999):

The validity is the number of trials in which the cue signaled the better option divided by the number of

all trials in which the cue signaled one of the options (Equation (A.1), Appendix A). Although the psy-

chological plausibility of an event-counter has been discussed (Dougherty & Franco-Watkins, 2008;

Gigerenzer, Hoffrage, & Goldstein, 2008), research shows that people are able to process frequency

information with ease (Gigerenzer & Hoffrage, 1995) and represent frequencies of events very accu-

rately (Fiedler, 2008; Zacks & Hasher, 2002). How people learn to choose the best strategy between

trials is formulated in SSL. SSL assumes a reinforcement-mechanism to take place: A strategy that

performed well in a trial is more likely used in the next trial. Participants are assumed to enter the lab

with a prior expectancy that a strategy performs well based on (e.g.) prior experience with the strategy

outside the lab. A participant with a high expectancy for (e.g.) Weighted Additive will likely choose

this strategy in the first trial. In case the participant chooses to apply Weighted Additive, she might

fail to apply this strategy correctly with a certain trembling-hand error-probability (i.e., unsystematic

noise). Finally, when the application of the strategy leads to a correct decision, Weighted Additive is

more likely used in the next trial (and therefore Take-the-best is less likely used) although the impact

of a single learning-experience may differ between participants as also captured by the model.
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4. Study 1: Learning in dynamic environments

In the first study we test the accuracy of our extension of learning in PCS against SSL and single-

strategy models. We use a dynamic environment with changing probabilistic relations between cues

and criterion in the course of the experiment.

4.1 Method

4.1.1 Participants

75 participants (42 female, mean age = 24 years) were recruited from the Decision Lab Subject Pool of

the Max-Planck-Institute using the online recruiting tool ORSEE (Greiner, 2004). Participants received

a show-up fee of 5 Euros (5.5 Dollars) and additional performance contingent payment of maximally

7.76 Euros (8.5 Dollars).

4.1.2 Materials and Design

We used a hypothetical stock-market game adopted from previous research (Bröder, 2003). Participants

were asked to select the more profitable of two stocks in a series of trials consisting each of a new pair

of stocks (Figure 2). Participants were provided with information from five experts (i.e., cues) that

made recommendation concerning whether the expected profitability of the respective stock was good

or bad (i.e., binary cues). The recommendations of each expert could differentiate between the two

options or could be indifferent between options (i.e., both options recommended).

The validities of the experts were varied as between-subjects factor with valcond1 = {.90, .80, .70, .65, .60},

valcond2 = {.95, .65, .63, .61, .59}, and valcond3 = {.73, .71, .69, .67, .65}. Participants received infor-

mation on the ranking of the experts according to their validity in the first round (i.e., expert A was

the most valid cue, expert B the second most valid and so on). We generated all 121 unique cue-

patterns with five binary cues (Jekel, Glöckner, & Fiedler, 2010). We defined the better of two option

for each trial as the more probable option in accordance with (naïve) Bayes given the cue-pattern and

the validities of the experts in the environment. That is, for each cue-pattern we calculated for each

option the posterior-probability given the validities of the environment and defined the option with the

higher posterior probability to be the better option (Equation (A.3)). After each decision, participants

received feedback about the better option and could thereby update subjective validities for the five
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Figure 2. Screenshot of a trial in the first study (translated from German). The binary cue pattern

(support indicated by pluses and rejection by minuses) for two stocks is displayed. After a decision for

one of the stocks, the participant receives feedback about the better option in the right window of the

display.

experts and/or the success of decision strategies. Participants received a payment of 2 Cents for a deci-

sion for the better stock. Cue-patterns were repeated in three blocks with random order in each block.

After each block of 121 decisions, participants were warned that the following 121 trials are from a

different stock-market and the five experts may change in the validity of predicting the better stock.

The most valid cue in each condition decreased close to chance-level with valcue1 = .51 in the final

round only.

4.2 Procedure

Participants received instructions on the stock-market game. After completing all 363 trials (3 rounds×

121 cue-patterns), participants were asked to order experts from the most valid to the least valid for the

last round in which the most valid cue changed to the least valid cue. For a correct ordering, participants

received an additional 0.50 Euros (0.55 Dollar). Finally, participants were asked for demographic data,

debriefed, and paid.
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4.3 Models

We compared the accuracy to predict participants’ choices for six models that are briefly summarized

in Table 1: The two network implementations of PCS-DM-L introduced above, the Strategy Selection

Learning Theory (SSL), and single strategies from the adaptive toolbox.

Table 1. Short description of all six models from two model classes (i.e., network models and adaptive

toolbox) compared in all three studies.

Network models

# Information integration Abbrev. Free parameters Description

1 Parallel Constraint Satis-
faction network-model with
modified Delta-Learning-
Rule and transformation
function

PCSTransf learning rate λ,
exponential
choice-rule
with sensitivity γ

Pick the option that is maximally-
coherent to the pattern of evidence and the
quality of evidence as learned with a rate
λ from past trials according to the Delta-
rule. The probability of choosing the op-
tion is dependent on the sensitivity γ to
differences in evidence for options.

2 PCS with noisy learning PCSNoise learning rate λ,
noise ρ

The probability of choosing the option is
dependent on the extent of random-noise
from a normal distribution with standard
deviation ρ when updating validities.

Adaptive toolbox

3 Strategy Selection Learning
Theory

SSL initial preference βTTB,
strength of initial preference
w (i.e., learning rate 1/w),
strategy application-error ε

Pick the option according to TTB or
WADD with probability 1 − ε in pro-
portion to the strategies’ expected suc-
cess resulting from an initial preference
for strategies βTTB and βWADD = 1− βTTB

with strength w and the experienced suc-
cess of each strategy from past trials.

Single strategies from the adaptive toolbox

4 Take-the-best TTB strategy application-error εT Decide in line with the most-valid cue that
discriminates between options with prob-
ability 1− εT .

5 Weighted Additive WADD strategy application-error εW Pick the option with the highest sum of
cues weighted by validities with probabil-
ity 1− εW .

6 Naïve Bayes RAT strategy application-error εR Pick the option with the highest odds-
ratio with probability 1− εR.



Learning in Dynamic Probabilistic Environments 18

4.4 Results

4.4.1 Performance

Participants choose the better option in 92% of all trials in the first round (Figure 3, left). The mean per-

formance does not change significantly in the second round and drops to 83% in the third round when

the most valid cue changes to the least valid cue. The cumulative performance shows that learning takes

place in each round (Figure 4, left three lines) and that participants quickly adapt to the environment

(i.e., around 90% correct decisions after 31 trials in the first round). A multilevel-regression model

with performance per round as criterion and round and environment (i.e., cue-validities for experts)

as predictors with dummy coding allowing for a random intercept and random slope for each round

conditioned on participants shows that performance is significantly lower in the third round in compar-

ison to the first round (b = −0.08, t(148) = −14.48, p < .001) and participants perform significantly

higher in the third environment with valcond3 = {.73, .71, .69, .67, .65} than the first environment with

valcond1 = {.90, .80, .70, .65, .60} (b = 0.02, t(72) = 2.45, p < .05). All other predictors are insignif-

icant (i.e., no significant differences between round 1 and round 2, no significant differences between

environment 1 and 2). Participants were also asked to order experts according to their validity in the

final round. Although the most frequent answer is the correct ordering (i.e., fifth cue least valid due to

change), only 8 out of 75 participants (i.e.,∼ 11%) give this answer followed by the next most frequent

category of five participants sticking to the order of experts in the first two rounds. Thus, a majority of

participants (i.e., ∼ 89%) err more or less when ordering cues by validity.

4.4.2 Model parameters and model comparison

The mean of individually fitted model-parameters for SSL (Table 2, upper part) are comparable to prior

studies (Rieskamp & Otto, 2006, Table 2, p. 220) except for the application error ε being relatively

higher for SSL and also for the single strategies which might result from the dynamic change in the

environment. The learning rate λ differs between the two versions of PCS which is due to the different

implementations of deriving choice probabilities.

PCSTransf predicts 90% of all participants’ choices correctly, PCSNoise and SSL perform slightly worse

with 89% and 88% of all choices correct (Table 3, upper part). Based on the posterior probabilities for

each participant and model (Appendix B), a majority of 89% of all participants can be best explained
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Figure 3. Overlap of participants’ choices with the (naïve) Bayesian solution (i.e., performance) for

round 1 to 3 in study 1 (left), study 2 (middle), and for study 3 (right). Violin plots are displayed:

Means are black dots, medians are black thick lines, the borders of the box indicate the lower or upper

quartile, whiskers indicate the minimum or maximum data point within the range of 1.5× the difference

between quartiles subtracted or added from the lower or upper quartile (given there are no outliers),

white dots indicate outliers (i.e., data outside the range of whiskers), and shapes around the box-plots

indicate the density distribution of the data.

by PCSNoise, a minority of 9% can be best explained by PCSTransf, and only 1% of participants can be

best explained by SSL. Posterior probabilities for participants classified is close to 1 for all models (last

column, Table 3). The overall likelihood for PCSNoise (i.e., across all participants) is overwhelming for

PCSNoise with PCSNoise being e1061 more likely than PCSTransf and e1977 more likely than SSL. Single

strategies perform on all measures poorly in comparison to both PCS-implementation of learning and

SSL.



Learning in Dynamic Probabilistic Environments 20

C
um

ul
at

iv
e 

pe
rf

or
m

an
ce

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Round 1 Round 2 Round 3 Round 1 Round 2 Round 3

Study 1 Study 2 Study 3

Figure 4. Cumulative participants’ performance for round 1 to 3 from 11 to 121 trials (study 1 and 2)

and from 10 to 100 trials (study 3) in steps of 10 trials.

Table 2. Mean and standard errors for parameters for all models for study 1 to 3.

PCSTransf PCSNoise SSL TTB WADD RAT

λ γ λ ρ w βTTB ε εTTB εWADD εRAT

S 1

Mean 0.63 2.17 1.4 0.011 54.26 .31 .08 .19 .13 .13

SE 0.06 0.04 0.05 0.001 5.44 .02 <.001 .01 <.001 <.001

S 2

Mean 0.65 2.22 1.4 0.011 31.16 .31 .09 .20 .13 .12

SE 0.05 0.04 0.04 0.001 4.31 .02 <.001 <.001 <.001 <.001

S 3

Mean 0.48 1.17 0.84 0.018 36.64 .39 .22 .39 .34 .36

SE 0.05 0.04 0.07 0.001 6.08 .04 .01 .01 .01 .01

4.5 Summary

Participants are able to adapt to the structure of the environment: Performance is already high with 92%

of all choices correct in the first round of 121 decision trials. Although performance drops when the
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Table 3. Percentage of participants best explained, choices correctly predicted, log-Likelihoods and

Bayesian information criterion (BIC) summed over participants, and posterior probabilities averaged

over participants for each model, each study, and for all studies.

% Partic % Choices Sum log(Lik) Sum BIC Mean Posterior

S 1, N = 75, C = 27,225

PCSTransf 9 90 -8344 17571 .95

PCSNoise 89 89 -7283 15449 ' 1

SSL 1 88 -9038 19402 ' 1

TTB 0 81 -12947 26336 —

WADD 0 87 -10263 20967 —

RAT 0 87 -10375 21193 —

S 2, N = 100, C = 36,300

PCSTransf 13 91 -10864 22907 .87

PCSNoise 85 89 -9814 20807 .99

SSL 0 88 -12038 25843 —

TTB 1 80 -17673 35936 .90

WADD 1 87 -13607 27803 .54

RAT 0 87 -13351 27291 —

S 3, N = 60, C = 6,000

PCSTransf 57 77 -3181 6914 .89

PCSNoise 27 72 -3352 7256 .86

SSL 5 70 -3461 7752 .65

TTB 7 61 -3921 8118 .77

WADD 0 66 -3747 7770 —

RAT 5 64 -3853 7983 .70

Overall, N = 235, C = 69,525

PCSTransf 23 89 -22388 47392 .89

PCSNoise 71 88 -20449 43513 .98

SSL 2 86 -24537 52997 .74

TTB 2 79 -34541 70389 .79

WADD 0 85 -27616 56540 .54

RAT 1 85 -27579 56467 .70

Note. N = Number of participants, C = Number of choices; Percentages may not add up to exactly

100% due to rounding.

structure of the environment changes, participants are able to adapt and their performance is high with

83% correct decisions. Participants’ adaptive learning in dynamic environments can be best explained

by PCS with a modified Delta-Rule and noisy learning. The evidence for PCS is overwhelming in

comparison to the models from the adaptive toolbox.
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5. Study 2: Learning in dynamic environments with positive or negative consequences

In the following study, we aimed to generalize and test for the stability of results. In the first study, par-

ticipants received a bonus for a correct decision while there was no negative outcome for an incorrect

decision. In many decisions in the real-world, an incorrect decision can lead to a negative outcome.

A comprehensive theory of probabilistic learning should account for learning by reinforcing correct

decisions and learning by punishing incorrect decisions (i.e., avoidance learning). We therefore tested

the effect of different consequences for decisions (i.e., receiving a bonus for a correct decision or being

punished for an incorrect decision) on the ability of the models to explain choices. We also used an

independent pool of participants to test for the stability of the effects in different subject-populations.

5.1 Methods

5.1.1 Participants

100 participants (66 female, mean age = 21 years) were recruited from the University of Mannheim.

Participants received performance contingent payment of maximally 9.28 Euros (10.29 Dollars).

5.1.2 Materials, Design, and Procedure

We used the same stock-market game and the same cue-patterns as in the first study. In difference

to the first study, we only used the environment valcond2 and valcond3 as typical non-/compensatory

environments as between-subjects factor. Participants were also informed about the ranking of the

experts according to their validity in the first round. Additionally, half of the participants were rewarded

0.025 Euros for a correct decision and the other half was punished by losing 0.025 Euros from an initial

payment of 0.025× 363 = 9.075 Euros for an incorrect decision. The procedure was also identical to

the first study. All 121 cue-patterns were repeated in three rounds with random order in each round.

Similar to the first study, the validity of the most valid expert changed close to chance-level with

valcue1 = .51 in the final round. For a correct ordering of experts according to their validity in the final

round, participants received an additional payment of 0.20 Euros (0.22 Dollars).
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5.2 Results

5.2.1 Performance

Results from the first study were replicated. Participants already choose the better option in 91% in the

first round (Figure 3, middle). The mean performance slightly increases in the second round to 92% and

drops to 84% in the third round. Similar to the first study, we ran a multilevel-regression model with

performance per round as criterion and round, environment (i.e., cue-validities for experts), and type of

payoff (i.e., reward versus punishment) as predictors with dummy-coding (i.e., round 1, environment

2, and punishment as control) allowing for a random intercept and random slope for each round condi-

tioned on the participant. Results are similar to the first study. Participants perform significantly worse

in the third round in comparison to the first round (b = −0.07, t(198) = −10.21, p < .001), and per-

form significantly better in the third environment in comparison to the second environment (b = 0.019,

t(97) = 2.96, p < .01). Participants receiving a reward for a correct decision versus a punishment

for an incorrect decision perform slightly worse with −.008 less correct choices (i.e., 2.90 choices on

average) in comparison to the condition with rewards but this difference is statistically insignificant

(t(97) = −1.27, p = .21). Similar to the first study, the number of participates who incorrectly stick

to the order of cues in the first two rounds and the number of participants correctly indicating the order

is roughly the same with a ratio of 9 to 8, a majority of 83 people gave other incorrect orderings of

cues. Thus, a majority of participants in study 2 was also unable to order experts according to validity

correctly.

5.2.2 Model parameters and model comparison

Mean model-parameters fitted per participant (Table 2, second section) are almost identical to the first

study. PCSTransf predicts 91% of all participants’ choices correctly, PCSNoise and SSL perform slightly

worse with 89% and 88% of all choices (Table 3, middle part). A majority of 85% of all participants

can be best explained by PCSNoise, a minority of 13% can be best explained by PCSTransf, and none of

the participants can be best explained by SSL. The posterior probabilities for the classified participants

is again high (last column, Table 3). The overall likelihood for PCSNoise is overwhelming for PCSNoise

with PCSNoise being e1050 more likely than PCSTransf and e2518 more likely than SSL. Similar to the first

study, single strategies perform on all measures poorly in comparison to both PCS-implementation of
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learning and SSL.

5.3 Summary

Participants already adapt to the environment in the first learning-round with 91% correct choices

and are also able to adapt to a change in the environment with still 84% correct choices in the third

round. PCS with a modified Delta-Rule predicts participants’ choices best in dynamic environments

for different types of consequences (i.e., reward versus punishment).

6. Study 3: Increasing the complexity of the decision-task

In the two preceding study, participants already performed at 90% correct choices after the first round

of 121 trials. We therefore increased the complexity of the learning task in the third study by increasing

the number of cues from five to six and by increasing the difficulty of decision-trials to test whether

the PCS-model can also account for decision making in more complex decision-environments.

6.1 Methods

6.1.1 Participants

60 participants (34 female, mean age = 24) were recruited from the Decision Lab Subject Pool of

the Max-Planck-Institute using the online recruiting tool ORSEE (Greiner, 2004). The study was run

with another unrelated study following, participants received a performance contingent payment of

maximally 4 Euros (4.43 Dollars).

6.1.2 Materials, Design, and Procedure

We used the same stock-market game (Figure 2). Contrary to the two preceding studies, we increased

the complexity of the task by increasing the number of experts from five to six. The validity of the

experts (cues) was set to val = {.89, .77, .72, .65, .60, .55}. Identical to the first two studies, partic-

ipants were informed about the ranking of the experts. We also manipulated if participants received

0.04 Euros for a correct decision or lost 0.04 Euros for an incorrect decision. Contrary to the preced-

ing studies, participants played a single round of 100 cue-patterns and the validity of the cues did not

change. A set of difficult cue-patterns was selected by choosing from the set of all possible unique

cue-patterns 80 patterns that resulted in the lowest log-Odds for the better option according to naïve
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Bayes (i.e., patterns for which the evidence for both options is similar). We picked another 20 random

cue-patterns for the complete set of 100 trials. After completing all 100 trials, participants were asked

for demographics, debriefed, and paid.

6.2 Results

6.2.1 Performance

Participants’ mean performance was 73 out of 100 correct cue-patterns (Figure 3, right) and therefore

lower as observed in the preceding studies. Thus, our manipulation of increasing complexity by se-

lecting only difficult tasks and increasing the number of cues was successful. Participants who receive

rewards for correct decisions versus punishment perform with .71 versus .74 of correct choices slightly

worse although this difference does not reach conventional levels of significance (t(58) = −1.58,

p = .06).

6.2.2 Model parameters and model comparison

The learning rate γ is with 0.48 and 0.84 lower for both PCS-implementations (Table 2, lower part) in

comparison to the preceding studies. The exponent γ is also lower with 1.17 versus 2.17 for PCSTransf

and the standard deviation of the error is also slightly higher .018 versus .011 for PCSNoise. For SSL

and all single-strategies, the strategy application-error ε is higher (up to .39 for TTB). PCSTransf predicts

77% of choices correctly, while PCSNoise and SSL perform worse with 72% and 70% (Table 3, lower

part). PCS can explain 84% of all participants (Table 3, lower part) best: Most participants (57%) can

be best explained by PCSTransf followed by 27% for PCSNoise. A minority of 5% and 7% of participants

can be best explained by SSL and the single strategy TTB. Mean posterior probabilities for PCSTransf

and PCSNoise are high (.89 and .86). The overall likelihood for PCSTransf is high for PCSTransf with

PCSTransf being e171 more likely than PCSNoise and e419 more likely than SSL.

6.3 Summary

As consequence of using tasks with increased difficulty, participants choose only only in 73% of

all comparisons the better option. Increased difficulty in decision tasks also resulted in less model-

consistent choice-behavior. The best model PCSTransf can explain 77% of all choices and therefore

13% to 14% less choices in comparison to the first and second study. Although PCS with a modified
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Delta-Rule can explain most of the participants best, the PCS-implementation with a transformation

function can handle the choices better than PCS with noisy learning. In the next section, we take a

closer look at the behavior of models and how the free parameters affect predicted choice-probabilities

that also provides a hint why PCSTransf is better than PCSNoise in the third study.

7. Overall model evaluation

7.1 Predicting choices

Predicted choice-probabilities of a typical participant from the first study show how PCSTransf, PCSNoise,

and SSL behave (Figure 5, upper left panel). For PCSTransf, there is low variance in choice-probabilites

for correctly and incorrectly predicted choices: All correctly versus incorrectly predicted choices have

the same probability around .90 versus .10. Those boundaries can be shifted by the sensitivity parame-

ter γ: When γ decreases, boundaries also decrease as can be seen in comparison to another participant

from the third study with a lower γ = 1.345 versus γ = 2.195 (Figure 6, upper left panel). When γ

approximates zero, both boundaries approximate guessing probabilities at .5 (see Equation (7)). The

reason that PCSTransf does not discriminate within (in-)correctly predicted choices is that activations of

nodes in PCS only differ to a small extent between trials due to the tendency of the network to maximize

differences in option-nodes for coherence in the network. These small difference do not have a signif-

icant effect when transformed into probabilities by an exponential choice rule (Equation (8)). PCSNoise

behaves differently: Predicted choice-probabilities for the observed choices are scattered across the

whole range from 0 to 1. Thus, the error implementation in PCSNoise gives a more differentiated pre-

diction for choice-probablities. For both models, the learning rate is lower for a typical participant in

the first study than in the second study (compare panel A in Figure 5 and Figure 6) in which participants

tended to perform worse (Figure 3).

SSL behaves similar to PCSNoise with predicted choice-probabilities around .90 and .10. When

both strategies TTB and WADD make the same correct or incorrect choice-predictions, the choice-

probabilities are identical to the application-error of the strategies ε. When strategies make different

predictions, initial preferences for strategies β as well as the learning rate w affect choice probabilities.

In the example of a typical participant from study 1 (Figure 5, panel A), the participant has an initial

higher preference for WADD (i.e., βWADD = 1 − βTTB = .76). Whenever TTB makes an incorrect

prediction and WADD a correct prediction for this participant, choice probabilities are above .5 close
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to the initial preference (the exact size is further moderated by ε). Whenever WADD makes an incorrect

prediction and TTB a correct prediction, choice-probabilities are below .5. Since this participant has a

high learning rate (i.e., a low tendency to stick to the initial preferences for strategies), the participant

tends to increase her preference for WADD as seen in an increasing curve (Figure 5, panel A). If the

learning rate is low (i.e., the tendency to stick to a strategy high), probabilities stay constant (Figure 6,

panel A).

Scatterplots for predicted choice probabilities for all studies between the three models are plotted

jointly for the first two studies (Figure 5, panel B to D) for which results are very similar and separately

for the third study (Figure 6, panel B to D). For the first two studies, there are 85% to 88% overlap

of the same choices correctly predicted in each model comparison (i.e., perccentage of choices in the

upper right quadrant in panel B: PCSTransf versus PCSNoise, panel C: PCSTransf versus SSL, and panel D:

PCSNoise versus SSL) . 7% to 8% of the same choices are incorrectly predicted by the models (lower

left quadrant in each panel). Differences of unique correctly and incorrectly predicted choices (i.e.,

differences in percentages of choice in the upper left and lower right quadrant of each panel) range

from 1% (comparison between PCSTransf and PCSNoise in panel B and PCSNoise and SSL in panel D) to

2% (comparison between PCSTransf and SSL in panel C). The pattern observed for a single participant

as discussed can be also observed overall: For PCSTransf 99% of all predicted choice-probabilities are in

the range of .80 to 1 for correct decision and .2 to 0 for incorrect predictions. PCSNoise and SSL scatter

choice-predictions across the entire range (panel D) although for different reasons as discussed for the

typical single participants. That is, for PCSNoise the variance of choice-probabilities can be observed

within a single participant whereas the variance of the choice-probabilities over all participants result

from four different lines of choice probabilities for each participant. For the third study (Figure 6) the

pattern of results is more extreme: Differences in unique (in-)correctly predicted choices range from

2% (panel D) to 6% (panel C). Additionally, PCSNoise still predicts choices with a high probability (i.e.,

15% in the range of .90 to 1) whereas PCSTransf and SSL almost never (3% of all choices) predicts

extreme probabilities for choices (see most right column number in panel B to D). Put differently,

PCSNoise makes more bold predictions whereas PCSTransf and SSL tend to decrease the number of



Learning in Dynamic Probabilistic Environments 28

Figure 5. Choice-probabilities and sum of log-Likelihoods for observed choices as predicted by

PCSNoise, PCSTransf, and SSL for a typical participant (panel A) and for all 175 participants×363 trials =

63,525 observed choices in Study 1 and 2 plotted between models (gray dots, panel B to D). In panel

A, choice-probabilities for each of the three models are plotted from left to right for each model in

the order of the decisions made by the participant. In panel B to D, numbers in the corners indicate

the percentage of observed choices predicted to lie in each of the four quadrants as indicated by the

thick black lines. Small numbers at the columns and rows of the plot indicate the sums of choice-

probabilities for each model over the column- or row-cells of the other model. Small numbers in the

cells indicate percentage of observed choices predicted to lie in cells of a range of .1 as indicated by

gray dotted lines.



Learning in Dynamic Probabilistic Environments 29

Figure 6. Choice-probabilities and sum of log-Likelihoods for observed choices as predicted by

PCSNoise, PCSTransf, and SSL for a typical participant (panel A) and for all 60 participants×100 trials =

6,000 observed choices in Study 3 plotted between models (panel B to D, gray dots). See the concep-

tually identicalFigure 5 for a detailed description of the four panels.

extreme predictions by lowering sensitivity γ to differences in activations in PCSNoise and by increasing

strategy-application error ε in SSL.4

4Choice-probabilities for a typical participant plotted for the third study (Figure 6) is also illustrative: When removing the
two choices for which PCSNoise has the lowest predicted choice-probabilities (i.e., 0.001 and 0.059), PCSNoise has the
highest log-Likelihood with −45.39 versus −46.45 for PCSTransf and −63.79 for SSL. Thus, which model fits the data
per participant best is sometimes determined by two extreme but incorrect choice-predictions.
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7.2 Validating model parameters

In the final analysis, we evaluate the conceptual validity of the free parameters in PCSTransf, PCSNoise,

and SSL by relating model-parameters to the overall performance of participants (i.e., relative number

of correct decisions). For PCSTransf we predict that an increasing learning rates λ and sensitivity for

differences in evidence as modelled with the parameter γ is associated with an increasing performance.

For PCSNoise we expect the same for the learning rate λ and a negative relation between the standard

deviation of the error ρ and performance (i.e., lower performance when learning is noisy). For SSL

we predict that a higher error ε in the application of strategies leads to lower performance. To test the

predictions, we ran four linear regressions (Table 4). Environmental factors (i.e., differences in validi-

ties and consequences) can explain 71% of the variance in participants’ performance in the baseline

model (first row). Results from the regressions with controls and model-parameters show support for

all predictions: A higher learning rate in both PCS implementations lead to higher performance rates

(second and third row, first column for parameters), a high sensitivity γ and a low standard deviation

for error are significantly related to higher performance (second and third row, second column for pa-

rameters), and a lower error rate ε in SSL is related to a higher performance (fourth row, 3 column for

parameters). A comparison between explained variance reveals (last column) that model parameters

can explain an additional 11% to 14% of unique variance in participants’ performance beyond controls.

Table 4. Regression-weights and explained variance from four linear regressions (table-rows) pre-

dicting participants’ performance based on environmental characteristics of the task as controls (i.e.,

cue-validities, positive/negative reinforcement) in the base model (first line) and base model plus indi-

vidual model parameters for PCSTransf (second line), PCSNoise (third line), and SSL (fourth line) for all

three studies.

Controls Parameters

Int Noncomp 1 Comp 2 Comp 3 Pos (1:λ, 2:λ, 3:w) (1:γ, 2:ρ, 3:βTTB) (3:ε) R2

Baseline 0.887*** 0.01 0.024* -0.151*** -0.013* — — — .711

PCSTransf 0.67*** 0.006 -0.006 -0.062*** -0.008 1: 0.027*** 1: 0.096*** — .846

PCSNoise 0.877*** 0.011 0.013 -0.096*** -0.006 2: 0.043*** 2: -4.646*** — .838

SSL 0.92*** 0.014 0.024* -0.076*** -0.009 3: <.001 3: 0.013 3: -0.528*** .819

Note. Significance: p∗ < .05, p∗∗ < .01, p∗∗∗ < .001
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7.3 Comparing both PCS-implementations

In the article, we introduced two PCS-implementations of learning (PCSTransf and PCSNoise) that differ

in how predictions are derived (i.e., sensitivities to differences in activation or noisy learning) but

assume the same learning-algorithm (Delta-rule). Both PCS models make different predictions for

decision times. The number of iterations on PCSTransf and the mean number (i.e., averaged over 1000

simulated participants) of iterations in PCSNoise are a thereby used as a proxy for decision time: The

higher the number of iterations I , the slower the expected decision time. Second, PCSNoise differs

from all other models in its tendency to scatter probabilities for predicted choices across the entire

range of probabilities (Figure 5). We show in the following that this behavior of PCSNoise is sensitive

to characteristics of the participant in the decision-environment and thereby accounts for meaningful

variance in the data.

7.3.1 Predicting decision times

On average over all participants and tasks in all three studies, participants need 1.93 seconds (SD =

2.04; Median = 1.30) to make a decision. Individual correlations between decision times and predic-

tions for each participant are higher for PCSNoise with 50% of all correlations between r = .23 and

r = .38 and a mean correlation of r = .30 for PCSNoise versus r = .24 for PCSTransf (Figure 7). A

comparison between two multilevel-models with either predictions of PCSTransf or PCSNoise included

as predictors for decision time (with a random intercept and slope conditioned on participants) shows

overwhelming evidence for PCSNoise for explaining decision times with a Bayes Factor of e664 in com-

parison to PCSTransf. Differences in predictions of decision times between PCS-models is explained in

more detail in Appendix D.

7.3.2 Validity of variance in predicted choice-probabilities for PCS with noisy learning

PCSNoise shows a high variance for predicted choice-probabilities (e.g., upper left panel Figure 5). In

the following, we test whether predicted-choice probabilities relate to the data in a meaningful way.

Choice-probabilities are derived from PCSNoise by simulating 1000 participants that differ only in ran-

dom noise added to the net-weights representing subjective validities for experts. For example, a
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Figure 7. Distributions of individual correlations between observed decision-times and predicted deci-

sion times for PCSTransf and PCSNoise.

probability of .55 for a choice for option A results from 550 of the 1000 simulated participants choos-

ing option A and 450 participants choosing option B. Predicted choice probabilities from PCSNoise are

influenced by the difficulty of the trial: When the evidence for options is similar, small differences in

the representation of net-weights due to noise result in choice-probabilities closer to .5. For easy trials

(clear evidence for one option), noise does not alter the decision of the simulated participants consider-

ably. Thus, the difficulty of the trials for real participants should be correlated with the predicted choice

probabilities from the model: Increasing predicted choice-probabilities for PCSNoise should correspond

to increasing probabilities for participants choosing the better option. We ran a multilevel logistic-

regression (allowing for a random intercept and slope for each participant) including participants from

all studies: We predicted the criterion of an observed correct choice (i.e., coded as 1 = correct and 0

= incorrect) and the maximal choice-probability for options in each trial t derived from PCSNoise as

predictor (i.e., max[p(optc,I,t); p(optnc,I,t)]). We find the predicted relation: When predicted choice-

probabilities increase by one percent (e.g., .71 to .72), the odds of a participant solving a trial increase

by a factor of 1.06 (p < .001). The high variance in choice-probabilities for PCSNoise corresponds

to the variance in probabilities of making a correct decision as predicted which further speaks for the
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validity of PCSNoise.

7.4 Overall summary

In three studies with 235 participants from two independent participant-pools making 69,525 choices in

four different environments with different types of consequences of decisions (rewards versus punish-

ment), the overall evidence for learning in PCS versus the adaptive toolbox is overwhelming (Table 3,

lower part). The Bayes-factor for the best fitting PCS-model (i.e., PCSNoise) and the best fitting model

from the adaptive toolbox (i.e., SSL) speaks with e2044 in favor of PCS. Most participants (94%) can

be best explained by PCS. Additionally, PCS predicts 89% whereas SSL predicts 86% of all choices

correctly; this means, that PCS makes .03 × 69,525 ' 2085 more correct choices.5 Analysis of par-

ticipants’ decision times show that PCS with noisy learning can explain decision times better than

PCS with a transformation function speaking for PCSNoise overall as a more accurate model of the

decision-process.

8. Theoretical implications

Results show that the assumption of powerful automatic cognitive processes that take many pieces

of information into account can explain human learning of cue-criterion relations and integration bet-

ter than a prototypical single (non-)compensatory strategy or a mix of both prototypes as specified

in SSL. People are able to learn cue-criterion relations and the interrelation between cues and also

track changes in those relations which are all aspects of the network-model (i.e., the entire available

information is represented as cue-nodes and validity-weights and their interrelation is modeled in the

interconnections between cue-nodes and option-nodes). Our results do not support the claim from

the adaptive toolbox that people simplify the task by strategically reducing the amount of information

as formulated in the typical non-compensatory strategy Take-the-best or by ignoring the interrelation

of information as specified in WADD. Low decision times (i.e., between one and two seconds) and

mostly incorrect rankings of cues according to validity further speak for automatic processes that re-

semble characteristics of intuition (Betsch & Glöckner, 2010).

Dual-process theories of thinking (e.g., Hogarth, 2001, 2005; Kahneman, 2011; Kahneman & Klein,

2009) assume a distinction between an automatic, fast, unintentional, and effortless mode (tacit system

5In Appendix E, we show that conclusions are stable in a cross-validation).
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or system 1) and a deliberate, analytical, and limited mode of thinking that requires effort (deliberate

system or system 2). It has been argued that heuristics are “shortcuts to deliberation” (Betsch &

Glöckner, 2010, p. 286) working within system 2 whereas unintentional processes as modeled in PCS

are parts of system 1. Learning within these two systems may differ. Learning from (e.g.) others

(Hertwig, Hoffrage, & The ABC Research Group, 2013) to apply a heuristic that is smart for a domain

(e.g., learning of cues for trustworthiness: Gambetta & Hamill, 2005) may demand attention and effort

from system 2 until heuristics are internalized and can easily be retrieved as automatized production-

rules (Marewski & Mehlhorn, 2011) whereas learning from experience in system 1 “depends heavily

on automatic processes [as modeled in PCS] and is therefore much easier” (Hogarth, 2001, p. 189).

Finally, heuristics may also influence learning in system 1 indirectly by restructuring the decision-

situation through searching, adding, and generating new information in case the initial automatic re-

sponse does not lead to a coherent interpretation of the decision-situation (Betsch & Glöckner, 2010;

Glöckner & Betsch, 2008). Overall, the studies show that learning by experience can be best modeled

by a parallel-constraint satisfaction network model that captures automatic processes of learning. How

automatic learning process can be influenced by heuristics (e.g., by restructuring the network) and how

this interplay between the two systems can be modeled in a formalized meta-theory is an open question

for further integrative research.
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APPENDICES

A. Models from the adaptive toolbox

A.1 Updating cue-validities

The validity of cue l at trial t = {1 . . . T} is defined as a relative frequency of past trials in which

the cue signaled the better option divided by the trials in which the cue discriminated between choice-

options:

valcuel,t =
f(correctt−1)

f(correctt−1) + f(incorrectt−1)
. (A.1)

For example, a cue that pointed towards the better option in 80 past trials and the worse option in 20

trials has a validity of valcue1,t = 80
80+20

= .80 at the present trial t.

A.2 Single strategies

In the model-comparison, we consider P = 3 prominent single strategies sp. The first model is the

non-compensatory strategy Take-the-best (Gigerenzer & Goldstein, 1996; Todd, Gigerenzer, & The

ABC Research Group, 2011). A participant who uses Take-the-best (TTB) inspects cues in the order

of validity and decides in line with the first cue that discriminates between options. Another prominent

compensatory strategy is Weighted Additive (Gigerenzer & Goldstein, 1996; Todd, Gigerenzer, & The

ABC Research Group, 2011). A participant who uses Weighted Additive (WADD) sums the weighted

cue pattern for each option and picks the option with the highest evidence EVoptk,t according to:

EVoptk,t =
L∑
l=1

valcuel,t × cuel,t (A.2)

Finally, another compensatory strategy—the rational model (RAT)—is the integration of the prob-

abilistic information for each comparison in line with (naïve) Bayes (Lee & Cummins, 2004). A

participant who uses RAT sums the cue pattern weighted by log-odds for each option and picks the

option with the highest evidence EVoptk,t according to:

EVoptk,t =
L∑
l=1

ln(
valcuel,t

1− valcuel,t
)× cuel,t (A.3)
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In line with past literature, we assume that participants may not always correctly apply a strategy

but only with a trembling-hand error ε that is estimated from the choices of a participant. That is,

the maximum likelihood of all correctly predicted choices nco, incorrectly predicted choices ninco, and

predicted guessing nguess by strategy sp can be calculated by finding the individual parameters ε in the

interval [.001, .499] that maximizes:

ln(Lsp) = ln[(1− ε)nco × εninco × .5nguess ]. (A.4)

A.3 SSL: Selecting strategies from the toolbox

According to the Strategy Selection Learning theory6 (Rieskamp, 2006, 2008; Rieskamp and Otto,

2006), people can choose a strategy sp from a set of P strategies when solving a probabilistic decision

task. In line with prior work, we set sp = {TTB,WADD}, that is, participants can either apply Take-

the best (TTB) or Weihghted Additive (WADD). When participants start with the first decision task,

they may differ in their initial preference for applying TTB or WADD. The parameter βTTB ranging

from 0 to 1 and WADD with βWADD = 1 − βTTB accounts for this individual differences. Participants

may also differ in the extent to which they are influenced by new experiences during the experiment

versus how strong they stick to their initial preferences. This is accounted for by the parameter w, with

1 ≤ w ≤ 100. A high w results in a slow learning rate. Following, qt=1,sp , the expectancy of strategy

sp for trial t = 1, can be calculated (cf. Rieskamp, 2006, Equation 2, p. 1356):

qt=1(sp) = rcorrect × w × βsp . (A.5)

The constant rcorrect is the potential payoff received in the first round and is used for scaling purposes

only given payoffs change between tasks (Rieskamp, 2006, p. 1356); we therefore set rcorrect = 1 in

all studies.7 Expectancies for the success of a strategy are transformed into probabilities for applying

a strategy (cf. Rieskamp, 2006, Equation 1, p. 1356):

pt(sp) =
qt(sp)∑K=2
k qt(sp)

. (A.6)

That is, the probability of applying strategy sp is the expectancy of this strategy normalized by the

6The following description of SSL is partially copied from Glöckner, Hilbig, and Jekel (2014).
7Conclusions do not depend on the exact value.
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sum of expectancies of all strategies in order to receive probabilities that range between 0 and 1. The

expectancy of strategy sp is updated in the next and all following T decision tasks by (cf. Rieskamp,

2006, Equation 3, p. 1356):

qt>1(sp) = qt−1(sp) + It−1(sp)× rt−1(sp). (A.7)

That is, the expectancy of strategy sp being successful in the current trial t > 1 is the sum of

the expectancy of the strategy for the previous decision trial t − 1 and the payoff received for the

previous decision trial rt−1 multiplied with an indicator It−1(sp). The indicator It−1(sp) is 1 when the

participant’s choice was in accord with the prediction of the strategy in the previous trial t − 1. If the

participant did not choose the option predicted by the strategy, the indicator is coded as It−1(sp) = 0

and, thus, the expectancy for strategy sp does not change. If both strategies make the same prediction

and the participant decided in line with the strategies, It−1(sp) equals the probability predicted for the

selection of the strategy, that is, It−1(sp) = pt(sp). The expectancy of a strategy can only take positive

values. In case the expectancy of a strategy is below 0, the expectancy is set to a value of .0001

(Rieskamp, 2006, p. 1356). If strategy sp predicts a choice for option k = 1 for trial t, the probability

for a choice for option 1 for strategy sp is p(opt1,t|sp) = 1; following, the probability for the alternative

option 2 is p(opt2,t|sp) = 0. Allowing for an error ε in the application of strategies, the probability for

a decision for option k = 1 given strategy sp and error ε, with 0 < ε < .5, is (cf. Rieskamp, 2006,

Equation 4, p. 1357):

p(opt1,t|sp, ε) = (1− ε)× pt(opt1,t|sp) + ε× pt(opt2,t|sp). (A.8)

Finally, the probability of a choice for option k independent of the strategy sp is the product of the

probability for the application of strategy sp and the probability of a choice for option k given strategy

sp and ε summed over all P strategies (cf. Rieskamp, 2006, Equation 5, p. 1357):

p(optk,t) =
P∑
p=1

pt(sp)× p(optk,t|sp, ε). (A.9)

To receive the sum of the log-likelihoods for the choices observed for a participant, two matrices,

PT,2 and I2,T , are multiplied. In the first column of matrix PT,2, logarithmic probabilities for a choice

for option k = 1 are included; in the second column, all logarithmic probabilities for a choice for option



Learning in Dynamic Probabilistic Environments 47

k = 2 are included. Matrix I2,T indicates the choices of a participant: if a participant chooses option 1

in trial t, ct = 1; if she chooses option 2, ct = 0. Matrix RT,T results from a matrix multiplication of

matrix PT,2 and matrix I2,T :

RT,T = PT,2 × I2,T =



ln(p(opt1,1)) ln(1− p(opt1,1))

ln(p(opt1,2)) ln(1− p(opt1,2))

...
...

ln(p(opt1,T )) ln(1− p(opt1,T ))


×

 c1 c2 . . . cT

1− c1 1− c2 . . . 1− cT

 .

(A.10)

The maximum of the log-likelihood function ln(LSSL) of the choices of a participant can be calculated

by finding the individual parameters of w in the interval [1, 100] (Rieskamp, 2006, p. 1362), βi in the

interval [.001, .999], and ε in the interval [.001, .5] that maximize the sum of the log-likelihoods in the

diagonal of the matrix RT,T :

ln(LSSL) =
T∑
t=1

Rt,t. (A.11)

B. Model comparison: Calculating Bayes-factors and posterior probabilities

To account for model flexibility, the Bayesian Information Criterion (BIC, Schwarz, 1978) is calculated

for model mj = {PCSTransf,PCSNoise,SSL,TTB,WADD,RAT} from the log-likelihoods as defined in

Equation (8) for PCS, Equation (A.11) for SSL, and Equation (A.4) for all single strategies:

BICmj
= −2× ln(Lmj

) + ln(T )× pmj
. (B.1)

That is, the log-likelihood increases by the sum of the product of the logarithmic number of decision

trials T used to find the optimal model parameters pmj
with pPCSNoise = 2 (i.e., learning rate λ, standard

deviation of the noise ρ), pPCSTransf = 2 (i.e., learning rate λ, exponent of the transformation function γ),

and pSSL = 3 (i.e., initial preference β, learning rate w, and application error ε), and pTTB = pWADD =

pRAT = 1 (i.e., application error ε). From the BIC scores, the Bayes-factor BFmj,x
resulting from a
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comparison between model j and x 6= j can be calculated (Wagenmaker, 2007, p. 796, Equation 9):

BFmj,x
= e[−.5×(BICmj−BICmx )]. (B.2)

Finally, the posterior probability for model j = k, that is, the probability of model k as the data

generating mechanism under consideration of the observed choices D and under the assumption of

equal prior probabilities for all models, can be calculated from the BICmj
values according to (cf.

Wagenmakers, 2007, Equation 11, p. 797):

Pr(mj|D) =
e[−

1
2
×BICmk

]∑J
j=1 e

[− 1
2
×BICmj ]

. (B.3)

C. Implementation of learning in PCS in the software-package R

C.1 PCS

In the default exemplary cue-pattern t specified in the arguments for the function “PCS()” from line

2 to 13, a cue with a net-weight of wcue1,t = .4 speaks for option 1 (thus, wcue1−opt1,t = .01 and

wcue1−opt2,t = −.01) and another cue speaks with a net-weight of wcue2,t = .3 for option 2 (thus,

wcue2−opt1,t = −.01 and wcue2−opt2,t = .01).

1 PCS = function(

2 activ = c(1,0,0,0,0), # node-activations at i = 1: asource acue1,1,t acue2,1,t aopt1,1,t aopt2,1,t

3 weightsNet = rbind(

4 c(0,.4,.3,0,0), # wsource−source,t wcue1,t wcue2,t wcue1−opt1,t wcue1−opt2,t

5 c(.4,0,0,.01,-.01), # wcue1,t wcue1−cue1,t wcue1−cue2,t wcue1−opt1,t wcue1−opt2,t

6 c(.3,0,0,-.01,.01), # wcue2,t wcue2−cue1,t wcue2−cue2,t wcue2−opt1,t wcue2−opt2,t

7 c(0,.01,-.01,0,-.2), # wopt1−source,t wopt1−cue1,t wopt1−cue2,t wopt1−opt1,t wopt1−opt2,t

8 c(0,-.01,.01,-.2,0)), # wopt2−source,t wopt2−cue1,t wopt2−cue2,t wopt2−opt1,t wopt2−opt2,t

9 flo = -1,

10 ceil = 1,

11 decay = .1,

12 stability = 10^6,

13 maxiter = 1000

14 ){

15 # define variables

16 ener = rep(0, maxiter)

17 iter = 1

18 # activation matrix at i = 1

19 matWeightedAct = activ * weightsNet
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20 while (iter != maxiter){

21 # input for each node in the net; Equation (1)

22 input = colSums(matWeightedAct)

23 # activation for each node for i = 1 + iter; Equation (2)

24 activ = (1-decay) * activ + input *

25 ifelse(round(input, 6) < 0, activ - flo, ceil - activ)

26 # set activation of source node to 1

27 activ[1] = 1

28 # activation matrix at i = 1 + iter

29 matWeightedAct = activ * weightsNet

30 # energy at i = 1 + iter; Equation (3)

31 ener[iter] = -sum(t(matWeightedAct) * activ)

32 # evaluate stopping criterion

33 if (iter > 10){

34 if(sum(floor(stability * (ener[(iter - 10) : (iter-1)])) -

35 floor(stability * (ener[iter])) == 0) == 10){

36 iter = iter + 1

37 break()

38 }}

39 iter = iter + 1

40 }

41 # prompt output of function

42 return(c(iter, ener[iter-1], activ))

43 }

Note. Comments are in red and R-commands are in bold. The function is also implemented in Rcpp

(Eddelbuettel & Francois, 2011) for faster execution and can be retrieved from the first author.

C.2 Learning in PCS

In the default exemplary cue-pattern t specified in the arguments for the function “deltaRule()” from

line 2 to 7, the observed network-activation at the final iteration I is aopt1,I,t = .50 and aopt1,I,t = −.50

for option 1 and 2. Thus, the network proposes a decision for option 1. The decision is wrong (i.e.,

the network receives feedback that option 2 is the better option) as coded in a desired activation of

daopt1,I,t = −.6 and daopt2,I,t = .6 for option 1 and 2. Given a default learning-rate of λ = .2, the

function updates the network-weights for the cues by decreasing net-weight wcue1,t and increasing

net-weight wcue2,t.

1 deltaRule = function(

2 activ = c(.50,-.50), # aopt1,I,t aopt2,I,t

3 desiredActiv = c(-.6, .6), # daopt1,I,t daopt2,I,t

4 weightsCuesOptions = cbind(c(.4,.01,-.01), # wcue1,t wcue1−opt1,t wcue1−opt2,t
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5 c(.3,-.01,.01)), # wcue2,t wcue2−opt1,t wcue2−opt2,t

6 lambda = .2,

7 flo = -1,

8 ceil = 1

9 ){

10 # Equation (4)

11 delta =

12 lambda * rowSums(t((desiredActiv-activ) *

13 weightsCuesOptions[2:3,]))

14 # Equation (5) and Equation (6)

15 updatedWeights =

16 weightsCuesOptions[1,] +

17 delta * ifelse(round(weightsCuesOptions[1,], 20) < 0,

18 weightsCuesOptions[1,] - flo,

19 ceil - weightsCuesOptions[1,])

20 # prompt output of function

21 return(updatedWeights) # wcue1,t+1 wcue2,t+1

22 }

Note. Comments are in gray and R-commands are in bold.

D. Differences in predictions of decision times between both PCS-implementations

Predictions for both implementations of PCS are highly intercorrelated with r = .81 (p < .001). A

scatterplot of iterations for all participants and trials (i.e., 69,525 data points) between both models

reveal that PCSTransf and PCSNoise tend to differ only for iterations above 175 (Figure 8, panel A).

PCSNoise tends to predict the same decision time for trials in which PCSTransf still discriminates in its

predictions (i.e., for ITransf & 175). A scatterplot between predictions of PCSTransf and decision time

(Figure 8, panel B, black dots) and PCSNoise and decision time in the same plot (red dots) reveals that

decision trials with iterations above 175 do not differ much in decision times as predicted by PCSNoise.

That is, each dot of the purple line gives the median of the observed decision times for tasks with

predicted iterations for PCSTransf in a range of +/-5 iterations around the dot and each dot of the yellow

line gives the median decision times for the same range for PCSNoise. Look for example at the two dots

at iteration 100 (they overlap for both lines). The purple dot is the median of the decision times for

all black dots within the boundaries of the dotted vertical blue lines (i.e., all trials within this range

for PCSTransf). The yellow dot is the the median of decision times for all red dots within this range

(i.e., all trials within this range for PCSNoise). The medians of decision times increase as predicted by

both models. Additionally, the medians of the purple line reach a plateau near the boundary of 175



Learning in Dynamic Probabilistic Environments 51

iterations where PCSNoise does not make different predictions between trials (i.e., most of the black dots

beyond an iteration of 175 lie at the border of 175 for PCSNoise as can be seen from panel A). Thus,

the observed data-pattern supports the predictions of PCSNoise. One potential post-hoc explanation for

this pattern is that trials that result in higher iterations for PCS tend to be more difficult tasks and that

at some level of difficulty decision times do not differ any longer (at least for this type of task). This is

supported by the data: Decision trials with iterations above 175 tend to be less often solved correctly

than decision trials with iterations below 175 with 68% versus 89% correct decisions.

Figure 8. Scatter-plot between PCS-iterations of the decision process for all participants and tasks

between PCSTransf and PCSNoise (A) and plot between iterations for both models and observed decision

times up to ten seconds (i.e., ∼ 99% of all data) (B). The gray line in panel A indicates identical

predictions (i.e., y = x) for both PCS implementations; for an explanation of the purple and yellow

line in panel B see text.

E. Cross-validation

To test for the stability of results in relation to the method used for model-classifications (e.g., for

avoiding potential problems of over-fitting of models; Marewski & Olsson, 2009; Myung, Pitt, &

Kim, 2005), we re-ran the model classifications in all studies. In difference to the analyses reported
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Table E.5. Percentage of participants best explained by model with free model-parameters fitted in

the first round (study 1 and 2) or the first 50 trials (study 3) in each study and summed over studies

based on choices in the final two rounds (study 1 and 2) or the final 50 trials (study 3) with fixed

model-parameters.

PCSTransf PCSNoise SSL TTB WADD RAT

Study 1 8 81 1 0 9 0

Study 2 15 75 1 0 8 1

Study 3 30 40 17 2 7 5

Overall 17 68 5 0 8 2

in the main text, we fitted free model-parameters in the first 121 trials of the first round in study 1

and study 2 and the first half (i.e., fifty trials) in study 3 and based our classification on the remaining

121 trials × 2 final rounds = 242 trials in study 1 and 2 and the remaining fifty trials in study 3 with

parameters fixed. Classifications lead to similar conclusions (Table E.5): PCSNoise can explain the

majority of participants (between 40% to 81% of participants) and both PCS-implementations can

predict participants’ decision best (between 70% to 90% of participants). In contrast to the results

reported in the main text, SSL performs slightly better in the third study with 17% of all participants

explained best by SSL. Summed over all three studies, percentages of classified participants for each

model are similar (compare with Table 3) except for a minority of 8% of participants that can be best

explained by the single-strategy WADD.
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